A196915 Decimal expansion of the slope (negative) at the point of tangency of the curves y=1/(1+x^2) and y=c*cos(x), where c is given by A196914.
6, 0, 7, 6, 2, 2, 2, 3, 7, 6, 9, 6, 8, 6, 8, 6, 5, 8, 5, 9, 0, 0, 1, 0, 0, 2, 6, 8, 2, 0, 2, 6, 3, 6, 4, 3, 2, 2, 7, 4, 8, 0, 9, 8, 7, 7, 7, 6, 5, 9, 7, 7, 8, 9, 9, 8, 2, 6, 0, 9, 5, 9, 6, 0, 2, 6, 2, 7, 3, 3, 6, 3, 0, 4, 6, 2, 8, 4, 7, 5, 8, 1, 4, 8, 2, 6, 6, 5, 4, 7, 4, 8, 5, 6, 0, 2, 5, 6, 6
Offset: 0
Examples
x=-0.60762223769686865859001002682026364322748...
Programs
-
Mathematica
Plot[{1/(1 + x^2), 0.874*Cos[x]}, {x, .5, 1}] t = x /. FindRoot[Tan[x] == 2 x/(1 + x^2), {x, .5, 1}, WorkingPrecision -> 100] RealDigits[t] (* A196913 *) c = N[Sqrt[t^4 + 6 t^2 + 1]/(t^4 + 2 t^2 + 1), 100] RealDigits[c] (* A196914 *) slope = N[-c*Sin[t], 100] RealDigits[slope] (* A196915 *)