A378344
Number of fixed site animals with n nodes on the nodes of the prismatic pentagonal tiling.
Original entry on oeis.org
3, 5, 12, 35, 106, 332, 1062, 3466, 11496, 38621, 131042, 448146, 1542548, 5338641, 18563680, 64814950, 227117365, 798387748, 2814618634
Offset: 1
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.
- Anthony J. Guttman (Ed.), Polygons, Polyominoes, and Polycubes. Canopus Academic Publishing Limited, Bristol, 2009.
- Iwan Jensen, Enumerations of Lattice Animals and Trees, Journal of Statistical Physics 102 (2001), 865-881.
- N. Madras, A pattern theorem for lattice clusters, Annals of Combinatorics, 3 (1999), 357-384.
- N. Madras and G. Slade, The Self-Avoiding Walk. Birkhäuser Publishing (1996).
- D. Hugh Redelmeier, Counting Polyominoes: Yet Another Attack, Discrete Mathematics 36 (1981), 191-203.
- Markus Vöge and Anthony J. Guttman, On the number of hexagonal polyominoes. Theoretical Computer Science, 307 (2003), 433-453.
The platonic tilings are associated with the following sequences: square
A001168; triangular
A001207; and hexagonal
A001420.
A378362
Number of fixed site animals containing n nodes on the nodes of the cairo pentagonal tiling.
Original entry on oeis.org
6, 10, 24, 68, 198, 594, 1816, 5650, 17824, 56836, 182788, 592060, 1929676, 6323418, 20819284, 68828316, 228372578, 760188362, 2537770576, 8494004948
Offset: 1
There are six translationally distinct nodes in the cairo pentagonal tiling, so a(1)=6.
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.
- Anthony J. Guttman (Ed.), Polygons, Polyominoes, and Polycubes, Canopus Academic Publishing Limited, Bristol, 2009.
- Iwan Jensen, Enumerations of Lattice Animals and Trees, Journal of Statistical Physics 102 (2001), 865-881.
- N. Madras, A pattern theorem for lattice clusters, Annals of Combinatorics, 3 (1999), 357-384.
- N. Madras and G. Slade, The Self-Avoiding Walk, Birkhäuser Publishing (1996).
- D. Hugh Redelmeier, Counting Polyominoes: Yet Another Attack, Discrete Mathematics 36 (1981), 191-203.
- Markus Vöge and Anthony J. Guttman, On the number of hexagonal polyominoes, Theoretical Computer Science, 307 (2003), 433-453.
The platonic tilings are associated with the following sequences: square
A001168; triangular
A001207; and hexagonal
A001420.
A378416
Number of fixed site animals with n nodes on the nodes of the rhombille tiling.
Original entry on oeis.org
3, 6, 21, 73, 273, 1049, 4117, 16416, 66263, 270211, 1111443, 4605575, 19204920, 80515734, 339137432, 1434319849
Offset: 1
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.
- Anthony J. Guttman (Ed.), Polygons, Polyominoes, and Polycubes. Canopus Academic Publishing Limited, Bristol, 2009.
- Iwan Jensen, Enumerations of Lattice Animals and Trees, Journal of Statistical Physics 102 (2001), 865-881.
- N. Madras, A pattern theorem for lattice clustersA pattern theorem for lattice clusters, Annals of Combinatorics, 3 (1999), 357-384.
- N. Madras and G. Slade, The Self-Avoiding Walk. Birkhäuser Publishing (1996).
- D. Hugh Redelmeier, Counting Polyominoes: Yet Another Attack, Discrete Mathematics 36 (1981), 191-203.
- Markus Vöge and Anthony J. Guttman, On the number of hexagonal polyominoes. Theoretical Computer Science, 307 (2003), 433-453.
The platonic tilings are associated with the following sequences: square
A001168; triangular
A001207; and hexagonal
A001420.
A379052
Number of fixed site animals with n nodes on the nodes of the floret pentagonal tiling.
Original entry on oeis.org
9, 15, 39, 124, 405, 1344, 4548, 15765, 55763, 199928, 723468, 2637378, 9677509, 35714337, 132445734, 493209254, 1843263534, 6910868397
Offset: 1
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.
- Anthony J. Guttman (Ed.), Polygons, Polyominoes, and Polycubes, Canopus Academic Publishing Limited, Bristol, 2009.
- Iwan Jensen, Enumerations of Lattice Animals and Trees, Journal of Statistical Physics 102 (2001), 865-881.
- N. Madras, A pattern theorem for lattice clusters, Annals of Combinatorics, 3 (1999), 357-384.
- N. Madras and G. Slade, The Self-Avoiding Walk, Birkhäuser Publishing (1996).
- D. Hugh Redelmeier, Counting Polyominoes: Yet Another Attack, Discrete Mathematics 36 (1981), 191-203.
- Markus Vöge and Anthony J. Guttman, On the number of hexagonal polyominoes, Theoretical Computer Science, 307 (2003), 433-453.
The platonic tilings are associated with the following sequences: square
A001168; triangular
A001207; and hexagonal
A001420.
A379163
Number of fixed site animals with n nodes on the nodes of the tetrakis square tiling.
Original entry on oeis.org
2, 6, 26, 121, 597, 3040, 15876, 84520, 456584, 2494906, 13759902, 76475067, 427805198, 2406492158, 13602178244, 77206507977
Offset: 1
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.
- Anthony J. Guttman (Ed.), Polygons, Polyominoes, and Polycubes, Canopus Academic Publishing Limited, Bristol, 2009.
- Iwan Jensen, Enumerations of Lattice Animals and Trees, Journal of Statistical Physics 102 (2001), 865-881.
- N. Madras, A pattern theorem for lattice clusters, Annals of Combinatorics, 3 (1999), 357-384.
- N. Madras and G. Slade, The Self-Avoiding Walk, Birkhäuser Publishing (1996).
- D. Hugh Redelmeier, Counting Polyominoes: Yet Another Attack, Discrete Mathematics 36 (1981), 191-203.
- Markus Vöge and Anthony J. Guttman, On the number of hexagonal polyominoes, Theoretical Computer Science, 307 (2003), 433-453.
The platonic tilings are associated with the following sequences: square
A001168; triangular
A001207; and hexagonal
A001420.
A379178
Number of fixed site animals with n nodes on the nodes of the kisrhombille tiling.
Original entry on oeis.org
6, 18, 90, 479, 2718, 16126, 97885, 603741, 3771287, 23792622, 151342506, 969465873, 6248109573
Offset: 1
There are 6 translationally distinct sites in the kisrhombille lattice, so a(1)=6.
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, Sections 2.7, 6.2 and 9.4.
- Anthony J. Guttman (Ed.), Polygons, Polyominoes, and Polycubes, Canopus Academic Publishing Limited, Bristol, 2009.
- Iwan Jensen, Enumerations of Lattice Animals and Trees, Journal of Statistical Physics 102 (2001), 865-881.
- N. Madras, A pattern theorem for lattice clusters, Annals of Combinatorics, 3 (1999), 357-384.
- N. Madras and G. Slade, The Self-Avoiding Walk, Birkhäuser Publishing (1996).
- D. Hugh Redelmeier, Counting Polyominoes: Yet Another Attack, Discrete Mathematics 36 (1981), 191-203.
- Markus Vöge and Anthony J. Guttman, On the number of hexagonal polyominoes. Theoretical Computer Science, 307 (2003), 433-453.
The platonic tilings are associated with the following sequences: square
A001168; triangular
A001207; and hexagonal
A001420.
Showing 1-6 of 6 results.
Comments