A196995 Determinant of Killing form K(x,y) of the Lie algebra sl(n,C) for n >=1.
0, -128, -5038848, 140737488355328, 5000000000000000000000000, -354400937492545922690672153504784580608, -72317557999158469111384459491956546088110808312359944192, 57896044618658097711785492504343953926634992332820282019728792003956564819968
Offset: 1
References
- J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, 1972, 21-22
Programs
-
Maple
interface(rtablesize=infinity): with(LinearAlgebra): for n from 1 to 12 do for i from 1 by 1 to n-1 do M[i] := Matrix(n); M[i](i,i) := 1; M[i](i+1,i+1) := -1; end do: ctr := n: for i from 1 by 1 to n do for j from 1 by 1 to n do if(i <> j) then M[ctr] := Matrix(n); M[ctr](i,j) := 1; ctr := ctr +1; end if end do: end do: A := Matrix(n^2-1): for i from 1 by 1 to n^2-1 do for j from 1 by 1 to n^2-1 do A(i,j) := 2*n*Trace(M[i].M[j]): end do: end do: print(Determinant(A)); end do: # Alternatively, using the second description print(0); for n from 2 to 20 do print((-1)^(binomial(n,2))*2^(n^2-1)*n^(n^2)); end do:
Formula
a(n) = (-1)^binomial(n,2) *2^(n^2-1)*n^(n^2) for n>= 2
Comments