A197004 Decimal expansion of xo, where P=(xo,yo) is the point nearest O=(0,0) in which a line y=mx meets the curve y=cos(x+Pi/3) orthogonally.
2, 5, 5, 4, 6, 5, 2, 8, 6, 1, 0, 3, 8, 5, 3, 5, 9, 6, 6, 9, 5, 8, 8, 2, 6, 9, 6, 6, 1, 3, 3, 2, 0, 2, 7, 2, 6, 5, 4, 7, 8, 8, 3, 5, 5, 9, 5, 3, 7, 0, 8, 5, 2, 8, 9, 3, 0, 2, 5, 2, 6, 7, 6, 7, 2, 9, 7, 6, 4, 8, 2, 2, 6, 7, 0, 9, 3, 0, 6, 6, 8, 2, 5, 0, 6, 4, 1, 1, 1, 8, 3, 6, 7, 2, 5, 8, 9, 1, 1, 4
Offset: 0
Programs
-
Mathematica
c = Pi/3; xo = x /. FindRoot[x == Sin[x + c] Cos[x + c], {x, .8, 1.2}, WorkingPrecision -> 100] RealDigits[xo] (* A197004 *) m = 1/Sin[xo + c] RealDigits[m] (* A197005 *) yo = m*xo d = Sqrt[xo^2 + yo^2] Show[Plot[{Cos[x + c], yo - (1/m) (x - xo)}, {x, -Pi/4, Pi/2}], ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 1}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic]
Comments