A179378 Decimal expansion of the ratio of the area of the triangle corresponding to a circular segment with area r^2 of a circle with radius r to r^2 itself.
2, 7, 7, 0, 9, 7, 9, 7, 6, 4, 1, 8, 5, 2, 1, 5, 1, 8, 9, 1, 4, 8, 3, 3, 0, 8, 6, 8, 9, 5, 9, 3, 8, 9, 6, 8, 0, 5, 7, 8, 7, 4, 5, 8, 5, 7, 0, 5, 5, 2, 6, 2, 1, 9, 0, 7, 0, 2, 8, 3, 1, 8, 2, 1, 5, 1, 0, 1, 1, 3, 1, 3, 4, 4, 6, 6, 1, 8, 2, 2, 9, 7, 9, 4, 2, 5, 0, 2, 8, 2, 8, 5, 1, 0, 5, 7, 2, 5, 3, 5, 2, 2, 7, 2, 1
Offset: 0
Examples
.2770979764185215189148330868959389680578745857055262190702831821510113134466...
References
- S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 7.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Circular Segment.
Crossrefs
Programs
-
Mathematica
c = 1; xo = x /. FindRoot[x == Sin[x + c] Cos[x + c], {x, .8, 1.2}, WorkingPrecision -> 100] RealDigits[xo] (* A179378 *) m = 1/Sin[xo + c] RealDigits[m] (* A197009 *) yo = m*xo d = Sqrt[xo^2 + yo^2] Show[Plot[{Cos[x + c], yo - (1/m) (x - xo)}, {x, -Pi/4, Pi/2}], ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 1}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic]
-
PARI
sin(solve(x=0, Pi, x-sin(x)-2))/2
Comments