A197010 Decimal expansion of xo, where P=(xo,yo) is the point nearest O=(0,0) in which a line y=mx meets the curve y=cos(x+1/2) orthogonally.
4, 6, 7, 2, 8, 1, 6, 0, 5, 3, 7, 6, 0, 1, 2, 1, 3, 3, 7, 8, 1, 6, 3, 0, 7, 2, 6, 8, 8, 4, 4, 2, 5, 0, 1, 3, 8, 1, 1, 6, 5, 1, 4, 2, 4, 6, 7, 6, 6, 7, 0, 6, 4, 5, 1, 6, 4, 1, 1, 5, 8, 9, 7, 7, 7, 0, 6, 7, 5, 6, 3, 4, 7, 2, 2, 9, 6, 3, 6, 4, 1, 5, 5, 0, 3, 8, 9, 3, 6, 1, 1, 6, 6, 2, 0, 5, 3, 7, 2, 2
Offset: 0
Programs
-
Mathematica
c = 1/2; xo = x /. FindRoot[x == Sin[x + c] Cos[x + c], {x, .8, 1.2}, WorkingPrecision -> 100] RealDigits[xo] (* A197010 *) m = 1/Sin[xo + c] RealDigits[m] (* A197011 *) yo = m*xo d = Sqrt[xo^2 + yo^2] Show[Plot[{Cos[x + c], yo - (1/m) (x - xo)}, {x, -Pi/4, Pi/2}], ContourPlot[{y == m*x}, {x, 0, Pi}, {y, 0, 1}], PlotRange -> All, AspectRatio -> Automatic, AxesOrigin -> Automatic]
Comments