A197026 Decimal expansion of the radius of the smallest circle tangent to the x axis and to the curve y=-cos(x) at points (x,y), (-x,y).
4, 2, 7, 4, 3, 2, 4, 5, 1, 6, 9, 3, 5, 8, 5, 8, 2, 7, 1, 9, 2, 6, 8, 0, 2, 4, 1, 7, 9, 6, 1, 6, 4, 7, 2, 0, 3, 6, 8, 0, 0, 9, 4, 8, 2, 8, 2, 9, 0, 5, 0, 9, 5, 2, 2, 1, 7, 3, 9, 7, 4, 6, 3, 4, 1, 8, 3, 1, 9, 9, 8, 4, 8, 5, 3, 6, 3, 3, 8, 1, 6, 4, 3, 8, 6, 8, 1, 5, 0, 4, 5, 9, 7, 8, 4, 7, 7, 6, 1
Offset: 1
Examples
radius=4.27432451693585827192680241796164720368009482...
Programs
-
Mathematica
r = 4.27; c = 1; Show[Plot[-Cos[c*x], {x, -5, 5}], ContourPlot[x^2 + (y - r)^2 == r^2, {x, -5, 5}, {y, -1.5, 8.7}], PlotRange -> All, AspectRatio -> Automatic] u[x_] := -Cos[c*x] + x/(c*Sin[c*x]); t = x /. FindRoot[Sqrt[u[x]^2 - x^2] == u[x] + Cos[c*x], {x, 2, 3}, WorkingPrecision -> 100] RealDigits[t] (* x coordinate of tangency point *) y = -Cos[c*t] (* y coordinate of tangency point *) radius = u[t] RealDigits[radius] (* A197026 *) slope = c*Sin[c*t] (* slope at tangency point *)
Comments