cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A197036 Decimal expansion of the Modified Bessel Function I of order 0 at 1.

Original entry on oeis.org

1, 2, 6, 6, 0, 6, 5, 8, 7, 7, 7, 5, 2, 0, 0, 8, 3, 3, 5, 5, 9, 8, 2, 4, 4, 6, 2, 5, 2, 1, 4, 7, 1, 7, 5, 3, 7, 6, 0, 7, 6, 7, 0, 3, 1, 1, 3, 5, 4, 9, 6, 2, 2, 0, 6, 8, 0, 8, 1, 3, 5, 3, 3, 1, 2, 1, 3, 5, 7, 5, 0, 1, 6, 1, 2, 2, 7, 7, 5, 4, 7, 0, 3, 9, 4, 8, 1, 8, 3, 5, 7, 1, 4, 7, 2, 8, 0, 1, 0, 1, 8, 7, 1, 0, 3, 6, 1, 3, 4, 6, 8
Offset: 1

Views

Author

R. J. Mathar, Oct 08 2011

Keywords

Examples

			1.26606587775200833559824462521471753760767031135496...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 51, page 504.

Crossrefs

Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), this sequence (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

Formula

I_0(1) = Sum_{k>=0} 1/(4^k*k!^2) = Sum_{k>=0} 1/A002454(k).
Equals (1/Pi)*Integral_{t=0..Pi} exp(cos(t)) dt.
Equals BesselJ(0,i). - Jianing Song, Sep 18 2021
From Amiram Eldar, Jul 09 2023: (Start)
Equals exp(-1) * Sum_{k>=0} binomial(2*k,k)/(2^k*k!).
Equals e * Sum_{k>=0} (-1/2)^k * binomial(2*k,k)/k!. (End)