cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A070910 Decimal expansion of BesselI(0,2).

Original entry on oeis.org

2, 2, 7, 9, 5, 8, 5, 3, 0, 2, 3, 3, 6, 0, 6, 7, 2, 6, 7, 4, 3, 7, 2, 0, 4, 4, 4, 0, 8, 1, 1, 5, 3, 3, 3, 5, 3, 2, 8, 5, 8, 4, 1, 1, 0, 2, 7, 8, 5, 4, 5, 9, 0, 5, 4, 0, 7, 0, 8, 3, 9, 7, 5, 1, 6, 6, 4, 3, 0, 5, 3, 4, 3, 2, 3, 2, 6, 7, 6, 3, 4, 2, 7, 2, 9, 5, 1, 7, 0, 8, 8, 5, 5, 6, 4, 8, 5, 8, 9, 8, 9, 8, 4, 5, 9
Offset: 1

Views

Author

Benoit Cloitre, May 20 2002

Keywords

Examples

			2.2795853023360672674372044408115333532858411...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:5 at page 20.

Crossrefs

Cf. A096789, A070913 (continued fraction), A006040.
Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), this sequence (I(0,2)).

Programs

  • Mathematica
    RealDigits[ BesselI[0, 2], 10, 110] [[1]] (* Robert G. Wilson v, Jul 09 2004 *)
    (* Or *) RealDigits[ Sum[ 1/(n!n!), {n, 0, Infinity}], 10, 110][[1]]
  • PARI
    besseli(0,2) \\ Charles R Greathouse IV, Feb 19 2014

Formula

Equals Sum_{k>=0} 1/k!^2.
From Peter Bala, Aug 19 2013: (Start)
Continued fraction expansion: 1/(1 - 1/(2 - 1/(5 - 4/(10 - 9/(17 - ... - (n-1)^2/(n^2+1 - ...)))))). See A006040. Cf. A096789.
This continued fraction is the particular case k = 0 of the result BesselI(k,2) = Sum_{n = 0..oo} 1/(n!*(n+k)!) = 1/(k! - k!/((k+2) - (k+1)/((2*k+5) - 2*(k+2)/((3*k+10) - ... - n*(n+k)/(((n+1)*(n+k+1)+1) - ...))))). See the remarks in A099597 for a sketch of the proof. (End)
From Amiram Eldar, May 29 2021: (Start)
Equals (1/e^2) * Sum_{k>=0} binomial(2*k,k)/k! = e^2 * Sum_{k>=0} (-1)^k*binomial(2*k,k)/k!.
Equal (1/(2*Pi)) * Integral_{x=0..2*Pi} exp(2*sin(x)) dx. (End)
Equals BesselJ(0,2*i). - Jianing Song, Sep 18 2021

A091681 Decimal expansion of BesselJ(0,2).

Original entry on oeis.org

2, 2, 3, 8, 9, 0, 7, 7, 9, 1, 4, 1, 2, 3, 5, 6, 6, 8, 0, 5, 1, 8, 2, 7, 4, 5, 4, 6, 4, 9, 9, 4, 8, 6, 2, 5, 8, 2, 5, 1, 5, 4, 4, 8, 2, 2, 1, 8, 6, 0, 7, 6, 0, 3, 1, 2, 8, 3, 4, 9, 7, 0, 6, 0, 1, 0, 8, 5, 3, 9, 5, 7, 7, 6, 8, 0, 1, 0, 7, 0, 5, 0, 1, 4, 8, 1, 1, 5, 1, 1, 8, 5, 3, 4, 2, 9, 3, 6, 6, 0, 4, 9
Offset: 0

Views

Author

Eric W. Weisstein, Jan 28 2004

Keywords

Comments

The Pierce Expansion of this number is the squares > 1: 4,9,16,25,... - Franklin T. Adams-Watters, May 22 2006

Examples

			0.223890779...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), this sequence (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

Formula

Equals Sum_{k>=0} (-1)^k/(k!)^2.
Continued fraction expansion: BesselJ(0,2) = 1/(4 + 4/(8 + 9/(15 + ... + (n - 1)^2/(n^2 + 1 + ...)))). See A073701 for a proof. - Peter Bala, Feb 01 2015
Equals BesselI(0,2*i), where BesselI is the modified Bessel function of order 0. - Jianing Song, Sep 18 2021

A055808 a(n) and floor(a(n)/4) are both squares; i.e., squares that remain squares when written in base 4 and last digit is removed.

Original entry on oeis.org

0, 1, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100
Offset: 0

Views

Author

Henry Bottomley, Jul 14 2000

Keywords

Comments

Let A(x) = (1 + k*x + (k-1)*x^2). Then the coefficients of (A(x))^2 sum to 4*k^2, where k = (n - 1). Examples: if k = 3 we have (1 + 3*x + 2*x^2)^2 = (1 + 6*x + 13x^2 + 12*x^3 + 4*x^4), and ( 1 + 6 + 13 + 12 + 4) = 36. If k = 4 we have (1 + 4*x + 3*x^2)^2 = (1 + 8*x + 22*x^2 + 24*x^3 + 9*x^4), and (1 + 8 + 22 + 24 + 9) = 64 = a(5). - Gary W. Adamson, Aug 02 2015
For n>0, a(n) are the Engel expansion of A197036. - Benedict W. J. Irwin, Dec 15 2016

Examples

			36 is in the sequence because 36 = 6^2 = 210 base 3 and 21 base 4 = 9 = 3^2.
		

Crossrefs

Cf. A023110. Essentially A016742 with one addition.

Programs

  • Magma
    [Floor((2*n^2)/(1 + n))^2: n in [0..60]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{0, 1}, LinearRecurrence[{3, -3, 1}, {4, 16, 36}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)
  • PARI
    concat(0, Vec(x*(x^3-7*x^2-x-1)/(x-1)^3 + O(x^100))) \\ Colin Barker, Sep 15 2014
    
  • PARI
    is_ok(n)=issquare(n) && issquare(floor(n/4));
    first(m)=my(v=vector(m),r=0);for(i=1,m,while(!is_ok(r),r++);v[i]=r;r++;);v; /* Anders Hellström, Aug 08 2015 */
    

Formula

a(n) = A004275(n)^2. - M. F. Hasler, Jan 16 2012
a(n) = 4*(-1+n)^2 for n>1; a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>4; G.f.: x*(x^3-7*x^2-x-1) / (x-1)^3. - Colin Barker, Sep 15 2014

A002454 Central factorial numbers: a(n) = 4^n * (n!)^2.

Original entry on oeis.org

1, 4, 64, 2304, 147456, 14745600, 2123366400, 416179814400, 106542032486400, 34519618525593600, 13807847410237440000, 6682998146554920960000, 3849406932415634472960000, 2602199086312968903720960000, 2040124083669367620517232640000, 1836111675302430858465509376000000
Offset: 0

Views

Author

Keywords

Comments

Denominators in the series for Bessel's J0(x) = 1 - x^2/4 + x^4/64 - x^6/2304 + ...
a(n) is the unreduced numerator in Product_{k=1..n} (4*k^2)/(4*k^2-1), therefore a(n)/A079484(n) = Pi/2 as n -> oo. - Daniel Suteu, Dec 02 2016
From Zhi-Wei Sun, Jun 26 2022: (Start)
Conjecture: Let zeta be a primitive 2n+1-th root of unity. Then the permanent of the 2n X 2n matrix [m(j,k)]_{j,k=1..2n} is a(n)/(2n+1) = ((2n)!!)^2/(2n+1), where m(j,k) is 1 or (1+zeta^(j-k))/(1-zeta^(j-k)) according as j = k or not.
The determinant of the matrix [m(j,k)]_{j,k=1..2n} was shown to be (-1)^(n-1)*((2n)!!)^2/(2n(2n+1)) by Han Wang and Zhi-Wei Sun in 2022. (End)

References

  • Richard Bellman, A Brief Introduction to Theta Functions, Dover, 2013 (20.1).
  • Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th german ed. 1965, ch. 4.4.7
  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 110.
  • E. L. Ince, Ordinary Differential Equations, Dover, NY, 1956; see p. 173.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapters 49 and 52, equations 49:6:1 and 52:6:2 at pages 483, 513.

Crossrefs

Programs

Formula

(-1)^n*a(n) is the coefficient of x^1 in Product_{k=0..2*n} (x+2*k-2*n). - Benoit Cloitre and Michael Somos, Nov 22 2002
E.g.f.: A(x) = arcsin(x)*sec(arcsin(x)). - Vladimir Kruchinin, Sep 12 2010
E.g.f.: arcsin(x)*sec(arcsin(x)) = arcsin(x)/sqrt(1-x^2) = x/G(0); G(k) = 2k*(x^2+1)+1-x^2*(2k+1)*(2k+2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 20 2011
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (2*k+2)^2/(1-x/(x - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jan 15 2013
From Ilya Gutkovskiy, Dec 02 2016: (Start)
a(n) ~ Pi*2^(2*n+1)*n^(2*n+1)/exp(2*n).
Sum_{n>=0} 1/a(n) = BesselI(0,1) = A197036. (End)
From Daniel Suteu, Dec 02 2016: (Start)
a(n) ~ 2^(2*n) * gamma(n+1/2) * gamma(n+3/2).
a(n) ~ Pi*(2*n+1)*(4*n^2-1)^n/exp(2*n). (End)
2*a(n)/(2*n+1)! = A101926(n) / A001803(n). - Daniel Suteu, Feb 03 2017
Limit_{n->oo} n*a(n)/((2n+1)!!)^2 = Pi/4. - Daniel Suteu, Nov 01 2017
Sum_{n>=0} (-1)^n/a(n) = BesselJ(0, 1) (A334380). - Amiram Eldar, Apr 09 2022
Limit_{n->oo} a(n) / (n * A001818(n)) = Pi. - Daniel Suteu, Apr 09 2022

A334380 Decimal expansion of Sum_{k>=0} (-1)^k/((2*k)!!)^2.

Original entry on oeis.org

7, 6, 5, 1, 9, 7, 6, 8, 6, 5, 5, 7, 9, 6, 6, 5, 5, 1, 4, 4, 9, 7, 1, 7, 5, 2, 6, 1, 0, 2, 6, 6, 3, 2, 2, 0, 9, 0, 9, 2, 7, 4, 2, 8, 9, 7, 5, 5, 3, 2, 5, 2, 4, 1, 8, 6, 1, 5, 4, 7, 5, 4, 9, 1, 1, 9, 2, 7, 8, 9, 1, 2, 2, 1, 5, 2, 7, 2, 4, 4, 0, 1, 6, 7, 1, 8, 0, 6, 0, 0, 0, 9, 8, 9, 1, 5, 6, 3, 3, 9, 7, 4, 9, 2, 9, 2, 5, 9, 8, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Comments

This constant is transcendental.

Examples

			1/(4^0*0!^2) - 1/(4^1*1!^2) + 1/(4^2*2!^2) - 1/(4^3*3!^2) + ... = 0.765197686557966551449717526...
		

Crossrefs

Bessel function values: this sequence (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

  • Mathematica
    RealDigits[BesselJ[0, 1], 10, 110] [[1]]
  • PARI
    besselj(0, 1) \\ Michel Marcus, Apr 26 2020

Formula

Equals BesselJ(0,1).
Equals BesselI(0,i), where BesselI is the modified Bessel function of order 0. - Jianing Song, Sep 18 2021

A334383 Decimal expansion of Sum_{k>=0} (-1)^k/(2^k*(k!)^2).

Original entry on oeis.org

5, 5, 9, 1, 3, 4, 1, 4, 4, 4, 1, 8, 9, 7, 9, 9, 1, 7, 4, 8, 8, 2, 6, 8, 4, 6, 7, 9, 1, 6, 8, 9, 6, 4, 0, 9, 8, 0, 6, 3, 6, 2, 5, 0, 4, 0, 3, 0, 9, 8, 3, 8, 6, 5, 7, 1, 5, 3, 1, 1, 7, 3, 4, 2, 1, 9, 7, 1, 7, 1, 2, 9, 2, 2, 8, 0, 2, 3, 1, 2, 6, 5, 1, 5, 7, 1, 0, 4, 4, 1, 9, 0, 2, 3, 4, 7, 2, 9, 4, 9, 4, 0, 8, 7, 4, 4, 9, 4, 4, 8
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/(2^0*0!^2) - 1/(2^1*1!^2) + 1/(2^2*2!^2) - 1/(2^3*3!^2) + ... = 0.5591341444189799174882684679...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), this sequence (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

  • Mathematica
    RealDigits[BesselJ[0, Sqrt[2]], 10, 110] [[1]]
  • PARI
    besselj(0, sqrt(2)) \\ Michel Marcus, Apr 26 2020

Formula

Equals BesselJ(0,sqrt(2)).
Equals BesselI(0,sqrt(2)*i), where BesselI is the modified Bessel function of order 0. - Jianing Song, Sep 18 2021

A334381 Decimal expansion of Sum_{k>=0} 1/(2^k*(k!)^2).

Original entry on oeis.org

1, 5, 6, 6, 0, 8, 2, 9, 2, 9, 7, 5, 6, 3, 5, 0, 5, 3, 7, 2, 9, 2, 3, 8, 6, 9, 1, 2, 6, 9, 2, 7, 7, 1, 7, 8, 8, 7, 1, 5, 8, 8, 2, 5, 3, 9, 8, 0, 2, 6, 9, 7, 0, 7, 5, 2, 7, 4, 3, 3, 8, 8, 2, 1, 1, 8, 2, 0, 4, 0, 2, 5, 8, 3, 8, 2, 3, 4, 9, 8, 5, 0, 9, 0, 8, 5, 8, 8, 9, 3, 8, 8, 3, 3, 8, 7, 0, 9, 9, 2, 4, 0, 9, 3, 1, 9, 7, 8, 3, 8
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/(2^0*0!^2) + 1/(2^1*1!^2) + 1/(2^2*2!^2) + 1/(2^3*3!^2) + ... = 1.56608292975635053729238691...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), A091681 (J(0,2)), A197036 (I(0,1)), this sequence (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

  • Mathematica
    RealDigits[BesselI[0, Sqrt[2]], 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/(2^k*(k!)^2)) \\ Michel Marcus, Apr 26 2020
    
  • PARI
    besseli(0, sqrt(2)) \\ Michel Marcus, Apr 26 2020

Formula

Equals BesselI(0,sqrt(2)).
Equals BesselJ(0,sqrt(2)*i). - Jianing Song, Sep 18 2021

A184877 a(n) = n^2*(n-2)^2*(n-4)^2*...*(1 or 2)^2.

Original entry on oeis.org

1, 1, 4, 9, 64, 225, 2304, 11025, 147456, 893025, 14745600, 108056025, 2123366400, 18261468225, 416179814400, 4108830350625, 106542032486400, 1187451971330625, 34519618525593600, 428670161650355625, 13807847410237440000, 189043541287806830625, 6682998146554920960000, 100004033341249813400625
Offset: 0

Views

Author

N. J. A. Sloane, Feb 01 2011

Keywords

Examples

			a(0) = Empty product = 1;
a(1) = 1^2 = 1;
a(2) = 2^2 = 4;
a(3) = 3^2*1^2 = 9;
a(4) = 4^2*2^2 = 64;
a(5) = 5^2*3^2*1^2 = 225;
...
		

Crossrefs

Rightmost diagonal of A182971.
With signs, a row of A288580.

Programs

  • Magma
    [1] cat [(&*[(n-2*k)^2: k in [0..Floor((n-1)/2)]]): n in [1..50]]; // G. C. Greubel, Oct 14 2018
  • Mathematica
    Table[Product[(n-2*k)^2, {k,0,Floor[(n-1)/2]}], {n,0,50}] (* G. C. Greubel, Oct 14 2018 *)
  • PARI
    vector(100, n, n--; prod(k=0, (n-1)\2, (n-2*k)^2)) \\ Altug Alkan, Oct 29 2015
    
  • PARI
    first(n) = {if(n<2, return(vector(n, i, 1))); my(res = vector(n), i = 3); res[1] = res[2] = 1; while(i<=n, res[i] = res[i-2]*(i-1)^2; i++) ;res} \\ David A. Corneth, Aug 03 2017
    

Formula

a(n) = (n!!)^2 = A006882(n)^2. - Gionata Neri, Oct 29 2015
For n > 1, a(n) = n^2 * a(n-2). - David A. Corneth, Aug 03 2017
From Amiram Eldar, Apr 09 2022: (Start)
Sum_{n>=0} 1/a(n) = BesselI(0, 1) + StruveL(0, 1)*Pi/2 = A197036 + A197037 * Pi/2.
Sum_{n>=0} (-1)^n/a(n) = BesselI(0, 1) - StruveL(0, 1)*Pi/2. (End)
E.g.f.: 1/(1-x^2) + x*(1+arcsin(x))/(1-x^2)^(3/2). - Fabián Pereyra, May 14 2023

A242282 a(n) = Sum_{k=0..n} (k!)^4 * StirlingS2(n,k)^2.

Original entry on oeis.org

1, 1, 17, 1441, 379217, 241351201, 316806826577, 767860003562401, 3168021900014798417, 20904944903800508800801, 210024043938800961464262737, 3086813642229865705833791897761, 64215498113561436496993921529947217, 1839120994194606497461076159930389792801
Offset: 0

Views

Author

Vaclav Kotesovec, May 10 2014

Keywords

Comments

Generally, for p>=1 is Sum_{k=0..n} (k!)^(2*p) * StirlingS2(n,k)^p asymptotic to c * (n!)^(2*p), where c = 1 + Sum_{n>=1} 1/(Product_{k=1..n} (2*k)^p).

Crossrefs

Cf. A064618 (p=1), A242283 (p=3).
Cf. A197036.

Programs

  • Maple
    a:= n-> add(k!^4*Stirling2(n,k)^2, k=0..n):
    seq(a(n), n=0..15);  # Alois P. Heinz, Oct 23 2023
  • Mathematica
    Table[Sum[(k!)^4 * StirlingS2[n,k]^2,{k,0,n}],{n,0,20}]
  • PARI
    a(n)=sum(k=0,n, k!^4*stirling(n,k,2)^2) \\ Charles R Greathouse IV, Oct 23 2023
    
  • PARI
    a(n)=if(n==0, return(1)); my(Q=x^(n-1),f=1); sum(k=1,n, f*=k; my(t=divrem(Q,x-k)); Q=t[1]; simplify(t[2])^2*f^4) \\ Charles R Greathouse IV, Oct 23 2023

Formula

a(n) ~ c * (n!)^4, where c = BesselI(0,1) = 1.266065877752... (see A197036).

A334379 Decimal expansion of Sum_{k>=0} 1/((2*k)!)^2.

Original entry on oeis.org

1, 2, 5, 1, 7, 3, 8, 0, 4, 0, 7, 3, 8, 6, 5, 1, 4, 6, 7, 7, 4, 4, 5, 1, 5, 9, 4, 7, 7, 3, 0, 7, 4, 0, 9, 8, 9, 5, 5, 5, 4, 9, 7, 7, 9, 2, 5, 0, 2, 0, 3, 3, 3, 2, 8, 5, 9, 9, 5, 9, 4, 7, 2, 8, 8, 3, 7, 5, 7, 9, 6, 5, 0, 5, 0, 0, 3, 4, 3, 5, 2, 3, 8, 7, 2, 1, 6, 4, 3, 0, 0, 2, 0, 4, 9, 5, 7, 6, 3, 2, 5, 1, 6, 9, 1, 6, 2, 8, 2, 7
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 25 2020

Keywords

Examples

			1/0!^2 + 1/2!^2 + 1/4!^2 + 1/6!^2 + ... = 1.25173804073865146774451594773...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(BesselI[0, 2] + BesselJ[0, 2])/2, 10, 110] [[1]]
  • PARI
    suminf(k=0, 1/((2*k)!)^2) \\ Michel Marcus, Apr 26 2020
    
  • PARI
    (besseli(0,2) + besselj(0,2))/2 \\ Michel Marcus, Apr 26 2020

Formula

Equals (BesselI(0,2) + BesselJ(0,2))/2.
Continued fraction: 1 + 1/(4 - 4/(145 - 144/(901 - ... - P(n-1)/((P(n) + 1) - ... )))), where P(n) = (2*n*(2*n - 1))^2. - Peter Bala, Feb 22 2024
Showing 1-10 of 15 results. Next