cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 39 results. Next

A000290 The squares: a(n) = n^2.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500
Offset: 0

Views

Author

Keywords

Comments

To test if a number is a square, see Cohen, p. 40. - N. J. A. Sloane, Jun 19 2011
Zero followed by partial sums of A005408 (odd numbers). - Jeremy Gardiner, Aug 13 2002
Begin with n, add the next number, subtract the previous number and so on ending with subtracting a 1: a(n) = n + (n+1) - (n-1) + (n+2) - (n-2) + (n+3) - (n-3) + ... + (2n-1) - 1 = n^2. - Amarnath Murthy, Mar 24 2004
Sum of two consecutive triangular numbers A000217. - Lekraj Beedassy, May 14 2004
Numbers with an odd number of divisors: {d(n^2) = A048691(n); for the first occurrence of 2n + 1 divisors, see A071571(n)}. - Lekraj Beedassy, Jun 30 2004
See also A000037.
First sequence ever computed by electronic computer, on EDSAC, May 06 1949 (see Renwick link). - Russ Cox, Apr 20 2006
Numbers k such that the imaginary quadratic field Q(sqrt(-k)) has four units. - Marc LeBrun, Apr 12 2006
For n > 0: number of divisors of (n-1)th power of any squarefree semiprime: a(n) = A000005(A006881(k)^(n-1)); a(n) = A000005(A000400(n-1)) = A000005(A011557(n-1)) = A000005(A001023(n-1)) = A000005(A001024(n-1)). - Reinhard Zumkeller, Mar 04 2007
If a 2-set Y and an (n-2)-set Z are disjoint subsets of an n-set X then a(n-2) is the number of 3-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 19 2007
Numbers a such that a^1/2 + b^1/2 = c^1/2 and a^2 + b = c. - Cino Hilliard, Feb 07 2008 (this comment needs clarification, Joerg Arndt, Sep 12 2013)
Numbers k such that the geometric mean of the divisors of k is an integer. - Ctibor O. Zizka, Jun 26 2008
Equals row sums of triangle A143470. Example: 36 = sum of row 6 terms: (23 + 7 + 3 + 1 + 1 + 1). - Gary W. Adamson, Aug 17 2008
Equals row sums of triangles A143595 and A056944. - Gary W. Adamson, Aug 26 2008
Number of divisors of 6^(n-1) for n > 0. - J. Lowell, Aug 30 2008
Denominators of Lyman spectrum of hydrogen atom. Numerators are A005563. A000290-A005563 = A000012. - Paul Curtz, Nov 06 2008
a(n) is the number of all partitions of the sum 2^2 + 2^2 + ... + 2^2, (n-1) times, into powers of 2. - Valentin Bakoev, Mar 03 2009
a(n) is the maximal number of squares that can be 'on' in an n X n board so that all the squares turn 'off' after applying the operation: in any 2 X 2 sub-board, a square turns from 'on' to 'off' if the other three are off. - Srikanth K S, Jun 25 2009
Zero together with the numbers k such that 2 is the number of perfect partitions of k. - Juri-Stepan Gerasimov, Sep 26 2009
Totally multiplicative sequence with a(p) = p^2 for prime p. - Jaroslav Krizek, Nov 01 2009
Satisfies A(x)/A(x^2), A(x) = A173277: (1, 4, 13, 32, 74, ...). - Gary W. Adamson, Feb 14 2010
Positive members are the integers with an odd number of odd divisors and an even number of even divisors. See also A120349, A120359, A181792, A181793, A181795. - Matthew Vandermast, Nov 14 2010
Besides the first term, this sequence is the denominator of Pi^2/6 = 1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/36 + ... . - Mohammad K. Azarian, Nov 01 2011
Partial sums give A000330. - Omar E. Pol, Jan 12 2013
Drmota, Mauduit, and Rivat proved that the Thue-Morse sequence along the squares is normal; see A228039. - Jonathan Sondow, Sep 03 2013
a(n) can be decomposed into the sum of the four numbers [binomial(n, 1) + binomial(n, 2) + binomial(n-1, 1) + binomial(n-1, 2)] which form a "square" in Pascal's Triangle A007318, or the sum of the two numbers [binomial(n, 2) + binomial(n+1, 2)], or the difference of the two numbers [binomial(n+2, 3) - binomial(n, 3)]. - John Molokach, Sep 26 2013
In terms of triangular tiling, the number of equilateral triangles with side length 1 inside an equilateral triangle with side length n. - K. G. Stier, Oct 30 2013
Number of positive roots in the root systems of type B_n and C_n (when n > 1). - Tom Edgar, Nov 05 2013
Squares of squares (fourth powers) are also called biquadratic numbers: A000583. - M. F. Hasler, Dec 29 2013
For n > 0, a(n) is the largest integer k such that k^2 + n is a multiple of k + n. More generally, for m > 0 and n > 0, the largest integer k such that k^(2*m) + n is a multiple of k + n is given by k = n^(2*m). - Derek Orr, Sep 03 2014
For n > 0, a(n) is the number of compositions of n + 5 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
a(n), for n >= 3, is also the number of all connected subtrees of a cycle graph, having n vertices. - Viktar Karatchenia, Mar 02 2016
On every sequence of natural continuous numbers with an even number of elements, the summatory of the second half of the sequence minus the summatory of the first half of the sequence is always a square. Example: Sequence from 61 to 70 has an even number of elements (10). Then 61 + 62 + 63 + 64 + 65 = 315; 66 + 67 + 68 + 69 + 70 = 340; 340 - 315 = 25. (n/2)^2 for n = number of elements. - César Aguilera, Jun 20 2016
On every sequence of natural continuous numbers from n^2 to (n+1)^2, the sum of the differences of pairs of elements of the two halves in every combination possible is always (n+1)^2. - César Aguilera, Jun 24 2016
Suppose two circles with radius 1 are tangent to each other as well as to a line not passing through the point of tangency. Create a third circle tangent to both circles as well as the line. If this process is continued, a(n) for n > 0 is the reciprocals of the radii of the circles, beginning with the largest circle. - Melvin Peralta, Aug 18 2016
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017
Numerators of the solution to the generalization of the Feynman triangle problem, with an offset of 2. If each vertex of a triangle is joined to the point (1/p) along the opposite side (measured say clockwise), then the area of the inner triangle formed by these lines is equal to (p - 2)^2/(p^2 - p + 1) times the area of the original triangle, p > 2. For example, when p = 3, the ratio of the areas is 1/7. The denominators of the ratio of the areas is given by A002061. [Cook & Wood, 2004] - Joe Marasco, Feb 20 2017
Equals row sums of triangle A004737, n >= 1. - Martin Michael Musatov, Nov 07 2017
Right-hand side of the binomial coefficient identity Sum_{k = 0..n} (-1)^(n+k+1)*binomial(n,k)*binomial(n + k,k)*(n - k) = n^2. - Peter Bala, Jan 12 2022
Conjecture: For n>0, min{k such that there exist subsets A,B of {0,1,2,...,a(n)-1} such that |A|=|B|=k and A+B contains {0,1,2,...,a(n)-1}} = n. - Michael Chu, Mar 09 2022
Number of 3-permutations of n elements avoiding the patterns 132, 213, 321. See Bonichon and Sun. - Michel Marcus, Aug 20 2022
Number of intercalates in cyclic Latin squares of order 2n (cyclic Latin squares of odd order do not have intercalates). - Eduard I. Vatutin, Feb 15 2024
a(n) is the number of ternary strings of length n with at most one 0, exactly one 1, and no restriction on the number of 2's. For example, a(3)=9, consisting of the 6 permutations of the string 102 and the 3 permutations of the string 122. - Enrique Navarrete, Mar 12 2025

Examples

			For n = 8, a(8) = 8 * 15 - (1 + 3 + 5 + 7 + 9 + 11 + 13) - 7 = 8 * 15 - 49 - 7 = 64. - _Bruno Berselli_, May 04 2010
G.f. = x + 4*x^2 + 9*x^3 + 16*x^4 + 25*x^5 + 36*x^6 + 49*x^7 + 64*x^8 + 81*x^9 + ...
a(4) = 16. For n = 4 vertices, the cycle graph C4 is A-B-C-D-A. The subtrees are: 4 singles: A, B, C, D; 4 pairs: A-B, BC, C-D, A-D; 4 triples: A-B-C, B-C-D, C-D-A, D-A-B; 4 quads: A-B-C-D, B-C-D-A, C-D-A-B, D-A-B-C; 4 + 4 + 4 + 4 = 16. - _Viktar Karatchenia_, Mar 02 2016
		

References

  • G. L. Alexanderson et al., The William Lowell Putnam Mathematical Competition, Problems and Solutions: 1965-1984, "December 1967 Problem B4(a)", pp. 8(157) MAA Washington DC 1985.
  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 2.
  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Chapter XV, pp. 135-167.
  • R. P. Burn & A. Chetwynd, A Cascade Of Numbers, "The prison door problem" Problem 4 pp. 5-7; 79-80 Arnold London 1996.
  • H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1996, p. 40.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 31, 36, 38, 63.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), p. 6.
  • M. Gardner, Time Travel and Other Mathematical Bewilderments, Chapter 6 pp. 71-2, W. H. Freeman NY 1988.
  • Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), p. 982.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.1 Terminology and §8.6 Figurate Numbers, pp. 264, 290-291.
  • Alfred S. Posamentier, The Art of Problem Solving, Section 2.4 "The Long Cell Block" pp. 10-1; 12; 156-7 Corwin Press Thousand Oaks CA 1996.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 35, 52-53, 129-132, 244.
  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • J. K. Strayer, Elementary Number Theory, Exercise Set 3.3 Problems 32, 33, p. 88, PWS Publishing Co. Boston MA 1996.
  • C. W. Trigg, Mathematical Quickies, "The Lucky Prisoners" Problem 141 pp. 40, 141, Dover NY 1985.
  • R. Vakil, A Mathematical Mosaic, "The Painted Lockers" pp. 127;134 Brendan Kelly Burlington Ontario 1996.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 123.

Crossrefs

Cf. A092205, A128200, A005408, A128201, A002522, A005563, A008865, A059100, A143051, A143470, A143595, A056944, A001157 (inverse Möbius transform), A001788 (binomial transform), A228039, A001105, A004159, A159918, A173277, A095794, A162395, A186646 (Pisano periods), A028338 (2nd diagonal).
A row or column of A132191.
This sequence is related to partitions of 2^n into powers of 2, as it is shown in A002577. So A002577 connects the squares and A000447. - Valentin Bakoev, Mar 03 2009
Boustrophedon transforms: A000697, A000745.
Cf. A342819.
Cf. A013661.

Programs

Formula

G.f.: x*(1 + x) / (1 - x)^3.
E.g.f.: exp(x)*(x + x^2).
Dirichlet g.f.: zeta(s-2).
a(n) = a(-n).
Multiplicative with a(p^e) = p^(2*e). - David W. Wilson, Aug 01 2001
Sum of all matrix elements M(i, j) = 2*i/(i+j) (i, j = 1..n). a(n) = Sum_{i = 1..n} Sum_{j = 1..n} 2*i/(i + j). - Alexander Adamchuk, Oct 24 2004
a(0) = 0, a(1) = 1, a(n) = 2*a(n-1) - a(n-2) + 2. - Miklos Kristof, Mar 09 2005
From Pierre CAMI, Oct 22 2006: (Start)
a(n) is the sum of the odd numbers from 1 to 2*n - 1.
a(0) = 0, a(1) = 1, then a(n) = a(n-1) + 2*n - 1. (End)
For n > 0: a(n) = A130064(n)*A130065(n). - Reinhard Zumkeller, May 05 2007
a(n) = Sum_{k = 1..n} A002024(n, k). - Reinhard Zumkeller, Jun 24 2007
Left edge of the triangle in A132111: a(n) = A132111(n, 0). - Reinhard Zumkeller, Aug 10 2007
Binomial transform of [1, 3, 2, 0, 0, 0, ...]. - Gary W. Adamson, Nov 21 2007
a(n) = binomial(n+1, 2) + binomial(n, 2).
This sequence could be derived from the following general formula (cf. A001286, A000330): n*(n+1)*...*(n+k)*(n + (n+1) + ... + (n+k))/((k+2)!*(k+1)/2) at k = 0. Indeed, using the formula for the sum of the arithmetic progression (n + (n+1) + ... + (n+k)) = (2*n + k)*(k + 1)/2 the general formula could be rewritten as: n*(n+1)*...*(n+k)*(2*n+k)/(k+2)! so for k = 0 above general formula degenerates to n*(2*n + 0)/(0 + 2) = n^2. - Alexander R. Povolotsky, May 18 2008
From a(4) recurrence formula a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) and a(1) = 1, a(2) = 4, a(3) = 9. - Artur Jasinski, Oct 21 2008
The recurrence a(n+3) = 3*a(n+2) - 3*a(n+1) + a(n) is satisfied by all k-gonal sequences from a(3), with a(0) = 0, a(1) = 1, a(2) = k. - Jaume Oliver Lafont, Nov 18 2008
a(n) = floor(n*(n+1)*(Sum_{i = 1..n} 1/(n*(n+1)))). - Ctibor O. Zizka, Mar 07 2009
Product_{i >= 2} 1 - 2/a(i) = -sin(A063448)/A063448. - R. J. Mathar, Mar 12 2009
a(n) = A002378(n-1) + n. - Jaroslav Krizek, Jun 14 2009
a(n) = n*A005408(n-1) - (Sum_{i = 1..n-2} A005408(i)) - (n-1) = n*A005408(n-1) - a(n-1) - (n-1). - Bruno Berselli, May 04 2010
a(n) == 1 (mod n+1). - Bruno Berselli, Jun 03 2010
a(n) = a(n-1) + a(n-2) - a(n-3) + 4, n > 2. - Gary Detlefs, Sep 07 2010
a(n+1) = Integral_{x >= 0} exp(-x)/( (Pn(x)*exp(-x)*Ei(x) - Qn(x))^2 +(Pi*exp(-x)*Pn(x))^2 ), with Pn the Laguerre polynomial of order n and Qn the secondary Laguerre polynomial defined by Qn(x) = Integral_{t >= 0} (Pn(x) - Pn(t))*exp(-t)/(x-t). - Groux Roland, Dec 08 2010
Euler transform of length-2 sequence [4, -1]. - Michael Somos, Feb 12 2011
A162395(n) = -(-1)^n * a(n). - Michael Somos, Mar 19 2011
a(n) = A004201(A000217(n)); A007606(a(n)) = A000384(n); A007607(a(n)) = A001105(n). - Reinhard Zumkeller, Feb 12 2011
Sum_{n >= 1} 1/a(n)^k = (2*Pi)^k*B_k/(2*k!) = zeta(2*k) with Bernoulli numbers B_k = -1, 1/6, 1/30, 1/42, ... for k >= 0. See A019673, A195055/10 etc. [Jolley eq 319].
Sum_{n>=1} (-1)^(n+1)/a(n)^k = 2^(k-1)*Pi^k*(1-1/2^(k-1))*B_k/k! [Jolley eq 320] with B_k as above.
A007968(a(n)) = 0. - Reinhard Zumkeller, Jun 18 2011
A071974(a(n)) = n; A071975(a(n)) = 1. - Reinhard Zumkeller, Jul 10 2011
a(n) = A199332(2*n - 1, n). - Reinhard Zumkeller, Nov 23 2011
For n >= 1, a(n) = Sum_{d|n} phi(d)*psi(d), where phi is A000010 and psi is A001615. - Enrique Pérez Herrero, Feb 29 2012
a(n) = A000217(n^2) - A000217(n^2 - 1), for n > 0. - Ivan N. Ianakiev, May 30 2012
a(n) = (A000217(n) + A000326(n))/2. - Omar E. Pol, Jan 11 2013
a(n) = A162610(n, n) = A209297(n, n) for n > 0. - Reinhard Zumkeller, Jan 19 2013
a(A000217(n)) = Sum_{i = 1..n} Sum_{j = 1..n} i*j, for n > 0. - Ivan N. Ianakiev, Apr 20 2013
a(n) = A133280(A000217(n)). - Ivan N. Ianakiev, Aug 13 2013
a(2*a(n)+2*n+1) = a(2*a(n)+2*n) + a(2*n+1). - Vladimir Shevelev, Jan 24 2014
a(n+1) = Sum_{t1+2*t2+...+n*tn = n} (-1)^(n+t1+t2+...+tn)*multinomial(t1+t2 +...+tn,t1,t2,...,tn)*4^(t1)*7^(t2)*8^(t3+...+tn). - Mircea Merca, Feb 27 2014
a(n) = floor(1/(1-cos(1/n)))/2 = floor(1/(1-n*sin(1/n)))/6, n > 0. - Clark Kimberling, Oct 08 2014
a(n) = ceiling(Sum_{k >= 1} log(k)/k^(1+1/n)) = -Zeta'[1+1/n]. Thus any exponent greater than 1 applied to k yields convergence. The fractional portion declines from A073002 = 0.93754... at n = 1 and converges slowly to 0.9271841545163232... for large n. - Richard R. Forberg, Dec 24 2014
a(n) = Sum_{j = 1..n} Sum_{i = 1..n} ceiling((i + j - n + 1)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = Product_{j = 1..n-1} 2 - 2*cos(2*j*Pi/n). - Michel Marcus, Jul 24 2015
From Ilya Gutkovskiy, Jun 21 2016: (Start)
Product_{n >= 1} (1 + 1/a(n)) = sinh(Pi)/Pi = A156648.
Sum_{n >= 0} 1/a(n!) = BesselI(0, 2) = A070910. (End)
a(n) = A028338(n, n-1), n >= 1 (second diagonal). - Wolfdieter Lang, Jul 21 2017
For n >= 1, a(n) = Sum_{d|n} sigma_2(d)*mu(n/d) = Sum_{d|n} A001157(d)*A008683(n/d). - Ridouane Oudra, Apr 15 2021
a(n) = Sum_{i = 1..2*n-1} ceiling(n - i/2). - Stefano Spezia, Apr 16 2021
From Richard L. Ollerton, May 09 2021: (Start) For n >= 1,
a(n) = Sum_{k=1..n} psi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} psi(gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(n/gcd(n,k))*mu(gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} sigma_2(gcd(n,k))*mu(n/gcd(n,k))/phi(n/gcd(n,k)). (End)
a(n) = (A005449(n) + A000326(n))/3. - Klaus Purath, May 13 2021
Let T(n) = A000217(n), then a(T(n)) + a(T(n+1)) = T(a(n+1)). - Charlie Marion, Jun 27 2022
a(n) = Sum_{k=1..n} sigma_1(k) + Sum_{i=1..n} (n mod i). - Vadim Kataev, Dec 07 2022
a(n^2) + a(n^2+1) + ... + a(n^2+n) + 4*A000537(n) = a(n^2+n+1) + ... + a(n^2+2n). In general, if P(k,n) = the n-th k-gonal number, then P(2k,n^2) + P(2k,n^2+1) + ... + P(2k,n^2+n) + 4*(k-1)*A000537(n) = P(2k,n^2+n+1) + ... + P(2k,n^2+2n). - Charlie Marion, Apr 26 2024
Sum_{n>=1} 1/a(n) = A013661. - Alois P. Heinz, Oct 19 2024
a(n) = 1 + 3^3*((n-1)/(n+1))^2 + 5^3*((n-1)*(n-2)/((n+1)*(n+2)))^2 + 7^3*((n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)))^2 + ... for n >= 1. - Peter Bala, Dec 09 2024

Extensions

Incorrect comment and example removed by Joerg Arndt, Mar 11 2010

A001044 a(n) = (n!)^2.

Original entry on oeis.org

1, 1, 4, 36, 576, 14400, 518400, 25401600, 1625702400, 131681894400, 13168189440000, 1593350922240000, 229442532802560000, 38775788043632640000, 7600054456551997440000, 1710012252724199424000000, 437763136697395052544000000, 126513546505547170185216000000
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the symmetrical n X n matrix M_n(i,j) = 1/Max(i,j); then for n > 0 det(M_n)=1/a(n). - Benoit Cloitre, Apr 27 2002
The n-th entry of the sequence is the value of the permanent of a k X k matrix A defined as follows: k is the n-th odd number; if we concatenate the rows of A to form a vector v of length n^2, v_{i}=1 if i=1 or a multiple of 2. - Simone Severini, Feb 15 2006
a(n) = number of set partitions of {1,2,...,3n-1,3n} into blocks of size 3 in which the entries of each block mod 3 are distinct. For example, a(2) = 4 counts 123-456, 156-234, 126-345, 135-246. - David Callan, Mar 30 2007
From Emeric Deutsch, Nov 22 2007: (Start)
Number of permutations of {1,2,...,2n} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 1234, 1324, 3124 and 2314.
Number of permutations of {1,2,...,2n} with n even entries that are followed by a smaller entry. Example: a(2)=4 because we have 2143, 3421, 4213 and 4321.
Number of permutations of {1,2,...,2n-1} with no even entry followed by a smaller entry. Example: a(2)=4 because we have 123, 132, 312 and 231.
Number of permutations of {1,2,...,2n-1} with n-1 odd entries followed by a smaller entry. Example: a(2)=4 because we have 132, 312, 231 and 321.
(End)
G. Leibniz in his "Ars Combinatoria" established the identity P(n)^2 = P(n-1)[P(n+1)-P(n)], where P(n) = n!. (For example, see the Burton reference.) - Mohammad K. Azarian, Mar 28 2008
a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = sigma_2(gcd(i,j)) for 1 <= i,j <= n, and n>0, where sigma_2 is A001157. - Enrique Pérez Herrero, Aug 13 2011
The o.g.f. of 1/a(n) is BesselI(0,2*sqrt(x)). See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - Wolfdieter Lang, Jan 09 2012
Number of n x n x n cubes C of zeros and ones such that C(x,y,z) and C(u,v,w) can be nonzero simultaneously only if either x!=u, y!=v, or z!=w. This generalizes permutations which can be considered as n x n squares P of zeros and ones such that P(x,y) and P(u,v) can be nonzero simultaneously only if either x!=u or y!=v. - Joerg Arndt, May 28 2012
a(n) is the number of functions f:[n]->[n(n+1)/2] such that, if round(sqrt(2f(x))) = round(sqrt(2f(y))), then x=y. - Dennis P. Walsh, Nov 26 2012
From Jerrold Grossman, Jul 22 2018: (Start)
a(n) is the number of n X n 0-1 matrices whose row sums and column sums are both {1,2,...,n}.
a(n) is the number of linear arrangements of 2n blocks of n different colors, 2 of each color, such that there are an even number of blocks between each pair of blocks of the same color.
(End)
Number of ways to place n instances of a digit inside an n X n X n cube so that no two instances lie on a plane parallel to a face of the cube (see Khovanova link, Lemma 6, p. 22). - Tanya Khovanova and Wayne Zhao, Oct 17 2018
Number of permutations P of length 2n which maximize Sum_{i=1..2n} |P_i - i|. - Fang Lixing, Dec 07 2018

Examples

			Consider the square array
  1,  2,  3,  4,  5,  6, ...
  2,  4,  6,  8, 10, 12, ...
  3,  6,  9, 12, 15, 18, ...
  4,  8, 12, 16, 20, 24, ...
  5, 10, 15, 20, 25, 30, ...
  ...
then a(n) = product of n-th antidiagonal. - _Amarnath Murthy_, Apr 06 2003
a(3) = 36 since there are 36 functions f:[3]->[6] such that, if round(sqrt(2f(x))) = round(sqrt(2f(y))), then x=y. The functions, denoted by <f(1),f(2),f(3)>, are <1,2,4>, <1,2,5>, <1,2,6>, <1,3,4>, <1,3,5>, <1,3,6> and their respective permutations. - _Dennis P. Walsh_, Nov 26 2012
1 + x + 4*x^2 + 36*x^3 + 576*x^4 + 14400*x^5 + 518400*x^6 + ...
		

References

  • Archimedeans Problems Drive, Eureka, 22 (1959), 15.
  • David Burton, "The History of Mathematics", Sixth Edition, Problem 2, p. 433.
  • J. Dezert, editor, Smarandacheials, Mathematics Magazine, Aurora, Canada, No. 4/2004 (to appear).
  • S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), 119-127.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • F. Smarandache, Back and Forth Factorials, Arizona State Univ., Special Collections, 1972.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.62(b).

Crossrefs

First right-hand column of triangle A008955.
Row n=2 of A225816.
Cf. A000290.
With signs, a row of A288580.

Programs

  • GAP
    List([0..20],n->Factorial(n)^2); # Muniru A Asiru, Oct 24 2018
    
  • Haskell
    import Data.List (genericIndex)
    a001044 n = genericIndex a001044_list n
    a001044_list = 1 : zipWith (*) (tail a000290_list) a001044_list
    -- Reinhard Zumkeller, Sep 05 2015
    
  • Magma
    [Factorial(n)^2: n in [0..20]]; // Vincenzo Librandi, Oct 24 2018
    
  • Maple
    seq((n!)^2,n=0..20); # Dennis P. Walsh, Nov 26 2012
  • Mathematica
    Table[n!^2, {n, 0, 20}] (* Stefan Steinerberger, Apr 07 2006 *)
    Join[{1},Table[Det[DiagonalMatrix[Range[n]^2]],{n,20}]] (* Harvey P. Dale, Mar 31 2020 *)
  • PARI
    a(n)=n!^2 \\ Charles R Greathouse IV, Jun 15 2011
    
  • Python
    import math
    for n in range(0,20): print(math.factorial(n)**2, end=', ') # Stefano Spezia, Oct 29 2018

Formula

a(n) = Integral_{x>=0} 2*BesselK(0, 2*sqrt(x))*x^n. This integral represents the n-th moment of a positive function defined on the positive half-axis. - Karol A. Penson, Oct 09 2001
a(n) ~ 2*Pi*n*e^(-2*n)*n^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
a(n) = polygorial(n, 4) = A000142(n)/A000079(n)*A000165(n) = (n!/2^n)*Product_{i=0..n-1} (2*i + 2) = n!*Pochhammer(1, n) = n!^2. - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
a(n) = Sum_{k>=0} (-1)^k*C(n, k)^2*k!*(2*n-k)!. - Philippe Deléham, Jan 07 2004
a(n) = !n!1 = !n! = Product{i=0, 1, 2, ... .}_{0 < |n-i| <= n}(n-i) = n(n-1)(n-2)...(2)(1)(-1)(-2)...(-n+2)(-n+1)(-n) = [(-1)^n][(n!)^2]. - J. Dezert (Jean.Dezert(AT)onera.fr), Mar 21 2004
D-finite with recurrence: a(0) = 1, a(n) = n^2*a(n-1). - Arkadiusz Wesolowski, Oct 04 2011
From Sergei N. Gladkovskii, Jun 14 2012: (Start)
A(x) = Sum_{n>=0,N) a(n)*x^n = 1 + x/(U(0;N-2)-x); N >= 4; U(k)= 1 + x*(k+1)^2 - x*(k+2)^2/G(k+1); besides U(0;infinity)=x; (continued fraction).
Let B(x) = Sum_{n>=0} a(n)*x^n/((n!)*(n+s)!), then B(0) = 1/(1-x) for abs(x) < 1 and B(1)= -1/x * log(1-x) for abs(x)< 1.
(End).
G.f.: 1 + x*(G(0) - 1)/(x-1) where G(k) = 1 - (k+1)^2*(1 - x*G(k+1)). - Sergei N. Gladkovskii, Jan 15 2013
a(n) = det(S(i+2,j), 1 <= i,j <= n), where S(n,k) are Stirling numbers of the second kind. - Mircea Merca, Apr 04 2013
a(n) = (2*n+1)!*2^(-4*n)*Sum_{k=0..n} (-1)^k*C(2*n+1,n-k)/(2*k+1). - Mircea Merca, Nov 12 2013
a(n) = A000290(A000142(n)). - Michel Marcus, Nov 12 2013
Sum_{n>=0} 1/a(n) = A070910 [Gradsteyn, Rzyhik 0.246.1]. - R. J. Mathar, Feb 25 2014. Corrected by Ilya Gutkovskiy, Aug 16 2016
From Ivan N. Ianakiev, Aug 16 2016: (Start)
a(n) = a(n-1) + 2*((n-1)^2)*sqrt(a(n-1)*a(n-2)) + ((n-1)^4)*a(n-2), for n > 1.
a(n) = a(n-1) - 2*(n^2 - 1)*sqrt(a(n-1)*a(n-2)) + (n^2 - 1)*a(n-2), for n > 1.
(End).
From Ilya Gutkovskiy, Aug 16 2016: (Start)
a(n) = A184877(n)*A184877(n-1).
Sum_{n>=0} (-1)^n/a(n) = BesselJ(0,2) = A091681. (End)
Sum_{n>=0} a(n)/(2*n+1)! = 2*Pi/sqrt(27). - Daniel Suteu, Feb 06 2017
a(n) = [x^n] Product_{k=1..n} (1 + k^2*x). - Vaclav Kotesovec, Feb 19 2022
a(n) = (2*n+1)! * [x^(2*n+1)] 4*arcsin(x/2)/sqrt(4-x^2). - Ira M. Gessel, Dec 10 2024

Extensions

More terms from James Sellers, Sep 19 2000
More terms from Simone Severini, Feb 15 2006

A001040 a(n+1) = n*a(n) + a(n-1) with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 3, 10, 43, 225, 1393, 9976, 81201, 740785, 7489051, 83120346, 1004933203, 13147251985, 185066460993, 2789144166880, 44811373131073, 764582487395121, 13807296146243251, 263103209266016890, 5275871481466581051, 111056404320064218961, 2448516766522879398193
Offset: 0

Views

Author

Keywords

Comments

If the initial 0 and 1 are omitted, CONTINUANT transform of 1, 2, 3, 4, 5, ...
a(n+1) is the numerator of the continued fraction given by C(n) = [n, n-1,...,3,2,1], e.g., [1] = 1, [2,1]=3, [3,2,1] = 10/3, [4,3,2,1] = 43/10 etc. Cf. A001053. - Amarnath Murthy, May 02 2001
Along those lines, a(n) is the denominator of the continued fraction [n,n-1,...3,2,1] and is the numerator of the continued fraction [1,2,3,...,n-1]. - Greg Dresden, Feb 20 2020
Starting (1, 3, 10, 43, ...) = eigensequence of triangle A127701. - Gary W. Adamson, Dec 29 2008
For n >=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 1's along the superdiagonal and the subdiagonal, and consecutive integers from 1 to n along the main diagonal (see Mathematica program below). - John M. Campbell, Jul 08 2011
Generally, solution of the recurrence a(n+1) = n*a(n) + a(n-1) is a(n) = BesselI(n,-2)*(2*a(0)*BesselK(1,2)-2*a(1)*BesselK(0,2)) + (2*a(0)*BesselI(1,2)+2*a(1)*BesselI(0,2))*BesselK(n,2), and asymptotic is a(n) ~ (a(0)*BesselI(1,2)+a(1)*BesselI(0,2)) * (n-1)!. - Vaclav Kotesovec, Jan 05 2013
For n > 0: a(n) = A058294(n,n) = A102473(n,n) = A102472(n,1). - Reinhard Zumkeller, Sep 14 2014
Conjecture: 2*n!*a(n) is the number of open tours by a rook on an (n X 2) chessboard which ends at the opposite line of length n. - Mikhail Kurkov, Nov 19 2019

Examples

			G.f. = x + x^2 + 3*x^3 + 10*x^4 + 43*x^5 + 225*x^6 + 1393*x^7 + 9976*x^8 + ...
		

References

  • Archimedeans Problems Drive, Eureka, 22 (1959), 15.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A column of A058294. Cf. A001053.
Cf. A127701. - Gary W. Adamson, Dec 29 2008
Similar recurrences: A001053, A058279, A058307. - Wolfdieter Lang, May 19 2010

Programs

  • Haskell
    a001040 n = a001040_list !! n
    a001040_list = 0 : 1 : zipWith (+)
       a001040_list (zipWith (*) [1..] $ tail a001040_list)
    -- Reinhard Zumkeller, Mar 05 2013
    
  • Magma
    a:=[1,1]; [0] cat [n le 2 select a[n] else (n-1)*Self(n-1) + Self(n-2): n in [1..23]]; // Marius A. Burtea, Nov 19 2019
  • Maple
    A001040 := proc(n)
        if n <= 1 then
            n;
        else
            (n-1)*procname(n-1)+procname(n-2) ;
        end if;
    end proc: # R. J. Mathar, Mar 13 2015
  • Mathematica
    Table[Permanent[Array[KroneckerDelta[#1, #2]*(#1) + KroneckerDelta[#1, #2 - 1] + KroneckerDelta[#1, #2 + 1] &, {n - 1, n - 1}]], {n, 2, 30}] (* John M. Campbell, Jul 08 2011 *)
    Join[{0},RecurrenceTable[{a[0]==1,a[1]==1,a[n]==n a[n-1]+a[n-2]}, a[n], {n,30}]] (* Harvey P. Dale, Aug 14 2011 *)
    FullSimplify[Table[2(-BesselI[n,-2]BesselK[0,2]+BesselI[0,2]BesselK[n,2]),{n,0,20}]] (* Vaclav Kotesovec, Jan 05 2013 *)
  • PARI
    {a(n) = contfracpnqn( vector(abs(n), i, i))[1, 2]}; /* Michael Somos, Sep 25 2005 */
    
  • Sage
    def A001040(n):
        if n < 2: return n
        return factorial(n-1)*hypergeometric([1-n/2,-n/2+1/2], [1,1-n,1-n], 4)
    [round(A001040(n).n(100)) for n in (0..23)] # Peter Luschny, Sep 10 2014
    

Formula

Generalized Fibonacci sequence for (unsigned) Laguerre triangle A021009. a(n+1) = sum{k=0..floor(n/2), C(n-k, k)(n-k)!/k!}. - Paul Barry, May 10 2004
a(-n) = a(n) for all n in Z. - Michael Somos, Sep 25 2005
E.g.f.: -I*Pi*(BesselY(1, 2*I)*BesselI(0, 2*sqrt(1-x)) - I*BesselI(1, 2)*BesselY(0, 2*I*sqrt(1-x))). Such e.g.f. computations were the result of an e-mail exchange with Gary Detlefs. After differentiation and putting x=0 one has to use simplifications. See the Abramowitz-Stegun handbook, p. 360, 9.1.16 and p. 375, 9.63. - Wolfdieter Lang, May 19 2010
Limit_{n->infinity} a(n)/(n-1)! = BesselI(0,2) = 2.279585302336... (see A070910). - Vaclav Kotesovec, Jan 05 2013
a(n) = 2*(BesselI(0,2)*BesselK(n,2) - BesselI(n,-2)*BesselK(0,2)). - Vaclav Kotesovec, Jan 05 2013
a(n) = (n-1)!*hypergeometric([1-n/2,1/2-n/2],[1,1-n,1-n], 4) for n >= 2. - Peter Luschny, Sep 10 2014
0 = a(n)*(-a(n+2)) + a(n+1)*(+a(n+1) + a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) for all n in Z. - Michael Somos, Sep 13 2014
Observed: a(n) = A070910*(n-1)!*(1 + 1/(n-1) + 1/(2*(n-1)^2) + O((n-1)^-3)). - A.H.M. Smeets, Aug 19 2018
a(n) mod 2 = A166486(n). - Alois P. Heinz, Jul 03 2023

Extensions

Definition clarified by A.H.M. Smeets, Aug 19 2018

A096789 Decimal expansion of BesselI(1,2).

Original entry on oeis.org

1, 5, 9, 0, 6, 3, 6, 8, 5, 4, 6, 3, 7, 3, 2, 9, 0, 6, 3, 3, 8, 2, 2, 5, 4, 4, 2, 4, 9, 9, 9, 6, 6, 6, 2, 4, 7, 9, 5, 4, 4, 7, 8, 1, 5, 9, 4, 9, 5, 5, 3, 6, 6, 4, 7, 1, 3, 2, 2, 8, 7, 9, 8, 4, 6, 0, 8, 5, 4, 5, 0, 3, 7, 5, 3, 5, 3, 6, 1, 1, 8, 5, 1, 1, 6, 1, 2, 2, 1, 4, 7, 5, 9, 4, 2, 2, 8, 9, 2, 5, 2, 3, 7, 7, 5
Offset: 1

Views

Author

Robert G. Wilson v, Jul 09 2004

Keywords

Examples

			1.59063685463732906338225...
		

Crossrefs

Programs

  • Maple
    evalf(BesselI(1,2)). # R. J. Mathar, Oct 16 2015
  • Mathematica
    RealDigits[BesselI[1, 2], 10, 110][[1]]
    (* Or *) RealDigits[ Sum[ n/(n!n!), {n, 0, Infinity}], 10, 110][[1]]
  • PARI
    besseli(1,2) \\ Charles R Greathouse IV, Feb 19 2014

Formula

Equals Sum_{k >= 0} k/k!^2.
Continued fraction expansion: 1/(1 - 1/(3 - 2/(7 - 6/(13 - 12/(21 - ... - n*(n-1)/(n^2+n+1 - ...)))))). For a sketch of the proof see A228229. Cf. A070910. - Peter Bala, Aug 19 2013
From Amiram Eldar, Jul 09 2023: (Start)
Equals exp(-2) * Sum_{k>=1} A000108(k)/(k-1)!.
Equals exp(2) * Sum_{k>=1} (-1)^(k+1) * A000108(k)/(k-1)!. (End)

A060997 Decimal representation of continued fraction 1, 2, 3, 4, 5, 6, 7, ...

Original entry on oeis.org

1, 4, 3, 3, 1, 2, 7, 4, 2, 6, 7, 2, 2, 3, 1, 1, 7, 5, 8, 3, 1, 7, 1, 8, 3, 4, 5, 5, 7, 7, 5, 9, 9, 1, 8, 2, 0, 4, 3, 1, 5, 1, 2, 7, 6, 7, 9, 0, 5, 9, 8, 0, 5, 2, 3, 4, 3, 4, 4, 2, 8, 6, 3, 6, 3, 9, 4, 3, 0, 9, 1, 8, 3, 2, 5, 4, 1, 7, 2, 9, 0, 0, 1, 3, 6, 5, 0, 3, 7, 2, 6, 4, 3, 5, 7, 8, 6, 1, 1, 4, 6, 5, 9, 5, 0
Offset: 1

Views

Author

Robert G. Wilson v, May 14 2001

Keywords

Comments

The value of this continued fraction is the ratio of two Bessel functions: BesselI(0,2)/BesselI(1,2) = A070910/A096789. Or, equivalently, to the ratio of the sums: Sum_{n>=0} 1/(n!n!) and Sum_{n>=0} n/(n!n!). - Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003
1.43312...=[1,2,3,4,5,...] = shape of a rectangle which partitions into n squares at stage n; i.e., this is an example of the match between the continued fraction of a number r and a rectangle having shape r. See A188640. - Clark Kimberling, Apr 09 2011

Examples

			1.433127426722311758317183455775...
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 110}, RealDigits[FromContinuedFraction[Range[nn]], 10, nn][[1]]]
    (* Or *) RealDigits[ BesselI[0, 2] / BesselI[1, 2], 10, 110] [[1]]
    (* Or *) RealDigits[ Sum[1/(n!n!), {n, 0, Infinity}] / Sum[n/(n!n!), {n, 0, Infinity}], 10, 110] [[1]]
  • Maxima
    set_display('none)$fpprec:100$bfloat(cfdisrep(makelist(x,x,1,1000))); /* Dimitri Papadopoulos, Oct 25 2022 */
  • PARI
    besseli(0,2)/besseli(1,2) \\ Charles R Greathouse IV, Feb 19 2014
    

Formula

A052119 Decimal expansion of number with continued fraction expansion 0, 1, 2, 3, 4, 5, 6, ...

Original entry on oeis.org

6, 9, 7, 7, 7, 4, 6, 5, 7, 9, 6, 4, 0, 0, 7, 9, 8, 2, 0, 0, 6, 7, 9, 0, 5, 9, 2, 5, 5, 1, 7, 5, 2, 5, 9, 9, 4, 8, 6, 6, 5, 8, 2, 6, 2, 9, 9, 8, 0, 2, 1, 2, 3, 2, 3, 6, 8, 6, 3, 0, 0, 8, 2, 8, 1, 6, 5, 3, 0, 8, 5, 2, 7, 6, 4, 6, 4, 1, 1, 1, 2, 9, 9, 6, 9, 6, 5, 6, 5, 4, 1, 8, 2, 6, 7, 6, 5, 6, 8, 7, 2, 3, 9, 8, 2
Offset: 0

Views

Author

Robert Lozyniak (11(AT)onna.com), Jan 21 2000

Keywords

Examples

			0.697774657964007982006790592551752599486658...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.2, p. 423.

Crossrefs

Equals 1/A060997.

Programs

  • Maple
    evalf(BesselI(1, 2)/BesselI(0, 2), 120);  # Alois P. Heinz, Jan 25 2022
  • Mathematica
    RealDigits[ FromContinuedFraction[ Range[0, 44]], 10, 110][[1]]
    (* Or *) RealDigits[ BesselI[1, 2] / BesselI[0, 2], 10, 110] [[1]]
    (* Or *) RealDigits[ Sum[n/(n!n!), {n, 0, Infinity}] / Sum[1/(n!n!), {n, 0, Infinity}], 10, 110] [[1]] (* Robert G. Wilson v, Jul 09 2004 *)
  • PARI
    besseli(1,2)/besseli(0,2) \\ Charles R Greathouse IV, Feb 19 2014

Formula

BesselI(1, 2)/BesselI(0, 2) = A096789/A070910. - Henry Bottomley, Jul 13 2001
Equivalently, the value of this continued fraction is the ratio of the sums: sum_{n=0..inf} n/(n!n!) and sum_{n=0..inf} 1/(n!n!). - Robert G. Wilson v, Jul 09 2004

Extensions

More terms from Vladeta Jovovic, Mar 30 2000
Entry revised by N. J. A. Sloane, Aug 13 2006

A065033 1 appears three times, other numbers twice.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35
Offset: 0

Views

Author

N. J. A. Sloane, Nov 04 2001

Keywords

Comments

Gives the number of terms in n-th row of many common tables.
Number of partitions of the (n+1)-th Fibonacci number into distinct Fibonacci numbers: a(n) = A000119(A000045(n)), see also A098641. - Reinhard Zumkeller, Apr 24 2005
a(n) = length of run n+1 of consecutive 4s in A254338. - Reinhard Zumkeller, Feb 27 2015
This is the Engel expansion of A070910 + A096789. - Benedict W. J. Irwin, Dec 16 2016

Crossrefs

Programs

Formula

From Philippe Deléham, Sep 28 2006: (Start)
a(n) = a(n-1)+a(n-2)-a(n-3) for n>3.
G.f.: (1-x^2+x^3)/(1-x-x^2+x^3). (End)
a(n) = floor((n+1)/2) + 0^n. - Reinhard Zumkeller, Feb 27 2015
E.g.f.: (2 + exp(x)*x + sinh(x))/2. - Stefano Spezia, Aug 05 2025

A000994 Shifts 2 places left under binomial transform.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 13, 36, 109, 359, 1266, 4731, 18657, 77464, 337681, 1540381, 7330418, 36301105, 186688845, 995293580, 5491595645, 31310124067, 184199228226, 1116717966103, 6968515690273, 44710457783760, 294655920067105, 1992750830574681, 13817968813639426
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of permutations of [n-1] that avoid both of the dashed patterns 1-23 and 3-12 and start with a descent (or are a singleton). For example, a(5)=5 counts 2143, 3142, 3214, 3241, 4321. - David Callan, Nov 21 2011

Examples

			A(x) = 1 + x^2/(1-x) + x^4/((1-x)^2*(1-2x)) + x^6/((1-x)^2*(1-2x)^2*(1-3x)) +...
		

References

  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nuernberg, Jul 27 1994
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A143983. Cf. A007476, A088022, A086880.

Programs

  • Haskell
    a000994 n = a000994_list !! n
    a000994_list = 1 : 0 : us where
      us = 1 : 1 : f 2 where
        f x = (1 + sum (zipWith (*) (map (a007318' x) [2..x]) us)) : f (x + 1)
    -- Reinhard Zumkeller, Jun 02 2013
  • Maple
    A000994 := proc(n) local k; option remember; if n <= 1 then 1 else 1 + add(binomial(n, k)*A000994(k - 2), k = 2 .. n); fi; end;
  • Mathematica
    a[n_] := a[n] = 1 + Sum[Binomial[n, k]*a[k-2], {k, 2, n}]; Join[{1, 0}, Table[a[n], {n, 0, 24}]] (* Jean-François Alcover, Oct 11 2011, after Maple *)
  • PARI
    a(n)=polcoeff(sum(k=0, n, x^(2*k)*(1-k*x)/prod(j=0, k, 1-j*x+x*O(x^n))^2), n) \\ Paul D. Hanna, Nov 02 2006
    

Formula

Since this satisfies a recurrence similar to that of the Bell numbers (A000110), the asymptotic behavior is presumably just as complicated - see A000110 for details.
However, a(n)/A000995(n) (e.g., 77464/63117) -> 1.228..., the constant in A051148 and A051149.
O.g.f.: A(x) = Sum_{n>=0} x^(2*n)*(1-n*x)/Product_{k=0..n} (1-k*x)^2. - Paul D. Hanna, Nov 02 2006
Let S(n) = Sum_{k >= 1} k^n/k!^2. Then S(n) = a(n)*S(0) + A000995(n)*S(1) is stated in A086880, where S(0) = 2.279585302... (see A070910) and S(1) = 1.590636854... (see A096789). Cf. A088022. - Peter Bala, Jan 27 2015
G.f. A(x) satisfies: A(x) = 1 + x^2 * A(x/(1 - x)) / (1 - x). - Ilya Gutkovskiy, Aug 09 2020

A091681 Decimal expansion of BesselJ(0,2).

Original entry on oeis.org

2, 2, 3, 8, 9, 0, 7, 7, 9, 1, 4, 1, 2, 3, 5, 6, 6, 8, 0, 5, 1, 8, 2, 7, 4, 5, 4, 6, 4, 9, 9, 4, 8, 6, 2, 5, 8, 2, 5, 1, 5, 4, 4, 8, 2, 2, 1, 8, 6, 0, 7, 6, 0, 3, 1, 2, 8, 3, 4, 9, 7, 0, 6, 0, 1, 0, 8, 5, 3, 9, 5, 7, 7, 6, 8, 0, 1, 0, 7, 0, 5, 0, 1, 4, 8, 1, 1, 5, 1, 1, 8, 5, 3, 4, 2, 9, 3, 6, 6, 0, 4, 9
Offset: 0

Views

Author

Eric W. Weisstein, Jan 28 2004

Keywords

Comments

The Pierce Expansion of this number is the squares > 1: 4,9,16,25,... - Franklin T. Adams-Watters, May 22 2006

Examples

			0.223890779...
		

Crossrefs

Bessel function values: A334380 (J(0,1)), A334383 (J(0,sqrt(2))), this sequence (J(0,2)), A197036 (I(0,1)), A334381 (I(0,sqrt(2))), A070910 (I(0,2)).

Programs

Formula

Equals Sum_{k>=0} (-1)^k/(k!)^2.
Continued fraction expansion: BesselJ(0,2) = 1/(4 + 4/(8 + 9/(15 + ... + (n - 1)^2/(n^2 + 1 + ...)))). See A073701 for a proof. - Peter Bala, Feb 01 2015
Equals BesselI(0,2*i), where BesselI is the modified Bessel function of order 0. - Jianing Song, Sep 18 2021

A186925 Coefficient of x^n in (1+n*x+x^2)^n.

Original entry on oeis.org

1, 1, 6, 45, 454, 5775, 88796, 1602447, 33213510, 777665691, 20302315252, 584774029983, 18422140045596, 630132567760345, 23257790717110392, 921362075184792825, 38994274473840538182, 1755943506127367745795, 83829045032101462204100, 4229207755493569286374167
Offset: 0

Views

Author

Emanuele Munarini, Mar 02 2011

Keywords

Crossrefs

Main diagonal of A292627.

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+n*x+x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 02 2011
    
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^(n-2*k), {k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)
    Table[GegenbauerC[n, -n, -n/2] + KroneckerDelta[n, 0], {n, 0, 100}] (* Emanuele Munarini, Oct 20 2016 *)
    Table[SeriesCoefficient[(1 + n*x + x^2)^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 13 2023 *)
  • Maxima
    a(n):=coeff(expand((1+n*x+x^2)^n),x,n);
    
  • Maxima
    makelist(ultraspherical(n,-n,-n/2),n,0,12); /* Emanuele Munarini, Oct 20 2016 */
    makelist(a(n),n,0,20);
    
  • PARI
    {a(n) = sum(k=0, n, (n-2)^(n-k)*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, May 01 2019
    
  • PARI
    a(n) = polcoef((1+n*x+x^2)^n, n); \\ Michel Marcus, May 01 2019

Formula

a(n) = [x^n] (1+n*x+x^2)^n.
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, n-2*k)*n^(n-2*k).
a(n) ~ BesselI(0,2) * n^n. - Vaclav Kotesovec, Apr 17 2014
a(n) = GegenbauerPoly(n,-n,-n/2). - Emanuele Munarini, Oct 20 2016
From Ilya Gutkovskiy, Sep 20 2017: (Start)
a(n) = [x^n] 1/sqrt((1 + 2*x - n*x)*(1 - 2*x - n*x)).
a(n) = n! * [x^n] exp(n*x)*BesselI(0,2*x). (End)
From Seiichi Manyama, May 01 2019: (Start)
a(n) = Sum_{k=0..n} (n-2)^(n-k) * binomial(n,k) * binomial(2*k,k).
a(n) = Sum_{k=0..n} (n+2)^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). (End)
a(n) = (1/4)^n * Sum_{k=0..n} (n-2)^k * (n+2)^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025
Showing 1-10 of 39 results. Next