cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A187021 Coefficient of x^n in (1 + (n+1)*x + n*x^2)^n.

Original entry on oeis.org

1, 2, 13, 136, 1921, 33876, 712909, 17383584, 481003009, 14869654300, 507406003501, 18928740714192, 765897591633409, 33392080668673832, 1559976990077534253, 77717020110946293376, 4111810085670587224065, 230190619432401207833004, 13591965974806603671569101
Offset: 0

Views

Author

Emanuele Munarini, Mar 02 2011

Keywords

Crossrefs

Main diagonal of A307883.

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+(n+1)*x+n*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
    
  • Maple
    A187021:= n -> simplify( n^(n/2)*GegenbauerC(n, -n, -(n+1)/(2*sqrt(n))) );
    1, seq(A187021(n), n = 1..30); # G. C. Greubel, May 31 2020
    a := n -> hypergeom([-n, -n], [1], n):
    seq(simplify(a(n)), n=0..18); # Peter Luschny, Dec 22 2020
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n,k]^2*n^k,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)
    Table[If[n==0, 1, Simplify[n^(n/2)*GegenbauerC[n, -n, -(n+1)/(2 Sqrt[n])]]], {n, 0, 30}] (* Emanuele Munarini, Oct 20 2016 *)
  • Maxima
    a(n):=coeff(expand((1+(n+1)*x+n*x^2)^n),x,n);
    makelist(a(n),n,0,20);
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^2*n^k)} \\ Paul D. Hanna, Mar 29 2011
    
  • Sage
    [1]+[ n^(n/2)*gegenbauer(n, -n, -(n+1)/(2*sqrt(n))) for n in (1..30)] # G. C. Greubel, May 31 2020

Formula

a(n) = [x^n] (1 + (n+1)*x + n*x^2)^n.
a(n) = n^(n/2)*GegenbauerPoly(n,-n,-(n+1)/(2*sqrt(n))). - Emanuele Munarini, Oct 20 2016
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k. - Paul D. Hanna, Mar 29 2011
a(n) ~ n^(n-1/4) * exp(2*sqrt(n)-1) / (2*sqrt(Pi)). - Vaclav Kotesovec, Apr 17 2014
a(n) = n! * [x^n] exp((n + 1)*x) * BesselI(0,2*sqrt(n)*x). - Ilya Gutkovskiy, May 31 2020
a(n) = hypergeom([-n, -n], [1], n). - Peter Luschny, Dec 22 2020

A092366 Coefficient of x^n in expansion of (1+n*x+n*x^2)^n.

Original entry on oeis.org

1, 1, 8, 81, 1120, 19375, 400896, 9630411, 262955008, 8032730715, 271175200000, 10017828457483, 401738097475584, 17371952344599385, 805429080795852800, 39844314853048828125, 2094272851244149112832, 116526044312704751752451
Offset: 0

Views

Author

Jon Perry, Mar 19 2004

Keywords

Comments

Also coefficient of x^n in expansion of (1-2*n*x+(n^2-4*n)*x^2)^(-1/2). - Vladeta Jovovic, Mar 22 2004

Crossrefs

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+n*x+n*x^2)^n)[n+1]: n in [1..22] ]; // Klaus Brockhaus, Mar 03 2011
    
  • Maple
    seq(n!*coeff(series(exp(n*x)*BesselI(0,2*sqrt(n)*x),x,n+1),x,n),n=1..17);
  • Mathematica
    Table[Sum[n^k*Binomial[n,k]*Binomial[k,n-k],{k,Floor[n/2],n}],{n,1,20}] (* Vaclav Kotesovec, Apr 17 2014 *)
    Table[If[n == 0, 1, n^(n/2) GegenbauerC[n, -n, -Sqrt[n]/2]], {n, 0,
    12}] (* Emanuele Munarini, Oct 20 2016 *)
  • Maxima
    a(n):=coeff(expand((1+n*x+n*x^2)^n), x, n);
    makelist(a(n), n, 1, 12); /* Emanuele Munarini, Mar 02 2011 */
  • PARI
    q(n)=(1+n*x+n*x^2)^n; for(i=0,20,print1(","polcoeff(q(i),i)))
    

Formula

a(n) = n^(n/2)*GegenbauerPoly(n,-n,-sqrt(n)/2). - Emanuele Munarini, Oct 20 2016
Sum_{k=floor(n/2)..n} n^k*binomial(n, k)*binomial(k, n-k). - Vladeta Jovovic, Mar 22 2004
a(n) ~ n^(n-1/4) * exp(2*sqrt(n)-2) / (2*sqrt(Pi)). - Vaclav Kotesovec, Apr 17 2014

Extensions

a(0)=1 prepended by Seiichi Manyama, May 01 2019

A187018 Coefficient of x^n in (1 + x + n*x^2)^n.

Original entry on oeis.org

1, 1, 5, 19, 145, 851, 7741, 58605, 600769, 5420035, 61026901, 628076153, 7648488145, 87388647373, 1138801242125, 14182492489651, 196218339243777, 2628971539313875, 38377805385510181, 547815690902283225, 8395817775835635601, 126725586542235932329
Offset: 0

Views

Author

Emanuele Munarini, Mar 02 2011

Keywords

Examples

			G.f. = 1 + x + 5*x^2 + 19*x^3 + 145*x^4 + 851*x^5 + 7741*x^6 + 58605*x^7 + ...
		

Crossrefs

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+x+n*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
    
  • Maple
    A187018:= n -> simplify( n^(n/2)*GegenbauerC(n, -n, -1/(2*sqrt(n))) );
    1, seq(A187018(n), n = 1..30); # G. C. Greubel, May 31 2020
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^k, {k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)
    a[ n_]:= SeriesCoefficient[ (1 + x + n*x^2)^n, {x, 0, n}]; (* Michael Somos, Dec 12 2014 *)
    Table[If[n == 0, 1, Simplify[n^(n/2) GegenbauerC[n, -n, -1/(2 Sqrt[n])]]], {n, 0, 12}] (* Emanuele Munarini, Oct 20 2016 *)
  • Maxima
    a(n):=coeff(expand((1+x+n*x^2)^n),x,n);
    makelist(a(n),n,0,20);
    
  • PARI
    {a(n)=polcoeff(1/sqrt(1 - 2*x - (4*n-1)*x^2 +x*O(x^n)),n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Dec 12 2014
    
  • PARI
    {a(n) = polcoef((1+x+n*x^2)^n, n)} \\ Seiichi Manyama, May 01 2019
    
  • Sage
    [1]+[ n^(n/2)*gegenbauer(n, -n, -1/(2*sqrt(n))) for n in (1..30)] # G. C. Greubel, May 31 2020

Formula

a(n) = [x^n] (1 + x + n*x^2)^n.
a(n) = n^(n/2)*GegenbauerPoly(n,-n,-1/(2*sqrt(n))). - Emanuele Munarini, Oct 20 2016
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, n-2*k)*n^k.
a(n) ~ 2^(n-1/2) * exp(sqrt(n)/2-1/8) * n^(n/2-1/2) / sqrt(Pi). - Vaclav Kotesovec, Apr 17 2014
a(n) = [x^n] 1/sqrt(1 - 2*x - (4*n-1)*x^2). - Paul D. Hanna, Dec 12 2014
a(n) = n! * [x^n] exp(x) * BesselI(0,2*sqrt(n)*x). - Ilya Gutkovskiy, May 31 2020

A292627 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)*BesselI(0,2*x).

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 2, 3, 0, 1, 3, 6, 7, 6, 1, 4, 11, 20, 19, 0, 1, 5, 18, 45, 70, 51, 20, 1, 6, 27, 88, 195, 252, 141, 0, 1, 7, 38, 155, 454, 873, 924, 393, 70, 1, 8, 51, 252, 931, 2424, 3989, 3432, 1107, 0, 1, 9, 66, 385, 1734, 5775, 13236, 18483, 12870, 3139, 252, 1, 10, 83, 560, 2995, 12276, 36645, 73392, 86515, 48620, 8953, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 20 2017

Keywords

Comments

A(n,k) is the k-th binomial transform of A126869 evaluated at n.

Examples

			E.g.f. of column k: A_k(x) =  1 + k*x/1! + (k^2 + 2)*x^2/2! + (k^3 + 6*k)*x^3/3! + (k^4 + 12*k^2 + 6)*x^4/4! + (k^5 + 20*k^3 + 30*k)*x^5/5! + ...
Square array begins:
  1,   1,    1,    1,     1,     1,  ...
  0,   1,    2,    3,     4,     5,  ...
  2,   3,    6,   11,    18,    27,  ...
  0,   7,   20,   45,    88,   155,  ...
  6,  19,   70,  195,   454,   931,  ...
  0,  51,  252,  873,  2424,  5775,  ...
		

Crossrefs

Rows n=0..2 give A000012, A001477, A059100.
Main diagonal gives A186925.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[k x] BesselI[0, 2 x], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/Sqrt[(1 + 2 x - k x) (1 - 2 x - k x)], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

O.g.f. of column k: 1/sqrt( (1 - (k-2)*x)*(1 - (k+2)*x) ).
E.g.f. of column k: exp(k*x)*BesselI(0,2*x).
From Seiichi Manyama, May 01 2019: (Start)
A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + x^2)^n.
A(n,k) = Sum_{j=0..n} (k-2)^(n-j) * binomial(n,j) * binomial(2*j,j).
A(n,k) = Sum_{j=0..n} (k+2)^(n-j) * (-1)^j * binomial(n,j) * binomial(2*j,j).
n * A(n,k) = k * (2*n-1) * A(n-1,k) - (k^2-4) * (n-1) * A(n-2,k). (End)
A(n,k) = Sum_{j=0..floor(n/2)} k^(n-2*j) * binomial(n,2*j) * binomial(2*j,j). - Seiichi Manyama, May 04 2019
T(n,k) = (1/Pi) * Integral_{x = -1..1} (k - 2 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (k + 2 - 4*x^2)^n/sqrt(1 - x^2) dx. - Peter Bala, Jan 27 2020
A(n,k) = (1/4)^n * Sum_{j=0..n} (k-2)^j * (k+2)^(n-j) * binomial(2*j,j) * binomial(2*(n-j),n-j). - Seiichi Manyama, Aug 18 2025

A247496 a(n) = n!*[x^n](exp(n*x)*BesselI_{1}(2*x)/x), n>=0, main diagonal of A247495.

Original entry on oeis.org

1, 1, 5, 36, 354, 4425, 67181, 1200745, 24699662, 574795035, 14930563042, 428235433978, 13442267711940, 458373150076335, 16872717817840509, 666835739823870900, 28163028244810505622, 1265837029802096365275, 60330098878933736719190, 3039079334694016053006276
Offset: 0

Views

Author

Peter Luschny, Dec 12 2014

Keywords

Comments

Also coefficient of x^n in the expansion of 1/(n+1) * (1 + n*x + x^2)^(n+1). - Seiichi Manyama, May 06 2019

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[n^n*HypergeometricPFQ[{1/2-n/2, -n/2}, {2}, 4/n^2],{n,1,20}]}] (* Vaclav Kotesovec, Dec 12 2014 *)
  • PARI
    {a(n) = sum(k=0, n\2, n^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k)/(k+1))} \\ Seiichi Manyama, May 05 2019
    
  • PARI
    {a(n) = polcoef((1+n*x+x^2)^(n+1)/(n+1), n)} \\ Seiichi Manyama, May 06 2019
  • Sage
    a = lambda n: 1 if n==0 else n^n*hypergeometric([1/2-n/2, -n/2], [2], 4/n^2).simplify()
    [a(n) for n in range(20)]
    

Formula

a(n) = Sum_{j=0..floor(n/2)} ((j+1)*n^(n-2*j)*n!)/((j+1)!^2*(n-2*j)!).
a(n) ~ BesselI(1,2) * n^n. - Vaclav Kotesovec, Dec 12 2014
From Ilya Gutkovskiy, Sep 21 2017: (Start)
a(n) = [x^n] (1 - n*x - sqrt(1 - 2*n*x + (n^2 - 4)*x^2))/(2*x^2).
a(n) = [x^n] 1/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - ...))))), a continued fraction. (End)

A187019 Coefficient of x^n in expansion of (1+n*x+(n+1)*x^2)^n.

Original entry on oeis.org

1, 1, 10, 99, 1366, 23525, 484436, 11582375, 314830342, 9576682569, 322014499852, 11851803991115, 473634489404220, 20414267521982893, 943592267071798696, 46545155813085562575, 2439857423310573714758
Offset: 0

Views

Author

Emanuele Munarini, Mar 02 2011

Keywords

Crossrefs

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+n*x+(n+1)*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
    
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^(n-2*k)*(n+1)^k, {k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 18 2014 *)
    Flatten[{1,Table[n^n * Hypergeometric2F1[1/2-n/2,-n/2,1,4*(1+n)/n^2],{n,1,20}]}] (* Vaclav Kotesovec, Apr 18 2014 *)
  • Maxima
    a(n):=coeff(expand((1+n*x+(n+1)*x^2)^n),x,n);
    makelist(a(n),n,0,12);
    
  • PARI
    a(n) = polcoef((1+n*x+(n+1)*x^2)^n, n); \\ Michel Marcus, Jun 01 2020

Formula

a(n) = [x^n] (1+n*x+(n+1)*x^2)^n.
a(n) = Sum (C(n, k)*C(n-k, n-2*k)*n^(n-2*k)*(n+1)^k, k=0..floor(n/2)).
a(n) ~ exp(2*sqrt(n)-2) * n^(n-1/4) / (2*sqrt(Pi)). - Vaclav Kotesovec, Apr 18 2014
a(n) = n! * [x^n] exp(n*x) * BesselI(0,2*sqrt(n + 1)*x). - Ilya Gutkovskiy, Jun 01 2020

A292629 a(n) = n! * [x^n] exp(n*x)*BesselI(1,2*x).

Original entry on oeis.org

0, 1, 4, 30, 304, 3885, 59976, 1085973, 22571200, 529712667, 13856212600, 399773871068, 12612288989664, 431948624278795, 15960564546516240, 632898895109081310, 26809122466181751552, 1208177444352064438155, 57719104861915100554200, 2913802658820378870546498, 154991214138728849712151200
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 20 2017

Keywords

Comments

The n-th term of the n-th binomial transform of A138364.

Crossrefs

Main diagonal of A292628.

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[E^(n*x)*BesselI[1,2*x],{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 20 2017 *)
  • PARI
    a(n) = polcoef((1+n*x+x^2)^n, n-1); \\ Michel Marcus, May 01 2019

Formula

a(n) = A292628(n,n).
a(n) ~ BesselI(1,2) * n^n. - Vaclav Kotesovec, Sep 20 2017
a(n) = [x^(n-1)] (1+n*x+x^2)^n = [x^(n+1)] (1+n*x+x^2)^n. - Seiichi Manyama, May 01 2019

A188202 Central coefficients in (1 + 2^n*x + x^2)^n.

Original entry on oeis.org

1, 2, 18, 560, 68614, 34210752, 69223161876, 564393502852608, 18462508476328312902, 2418515748615522678533120, 1267759405004680431879193624828, 2658525712652053771685500828954042368
Offset: 0

Views

Author

Paul D. Hanna, Mar 24 2011

Keywords

Comments

Variant of the central trinomial coefficients: A002426(n) = [x^n] (1+x+x^2)^n.

Examples

			Ignoring the initial term, this sequence forms the logarithmic series:
L(x) = 2*x + 18*x^2/2 + 560*x^3/3 + 68614*x^4/4 + 34210752*x^5/5 + ...
where the g.f. of A188203 begins:
exp(L(x)) = 1 + 2*x + 11*x^2 + 206*x^3 + 17586*x^4 + 6878604*x^5 + ...
Illustrate definition.
The coefficients of x^k in (1 + 2^n*x + x^2)^n, k=0..2n, n>=0, begin:
n=0: [(1)];
n=1: [1, (2), 1];
n=2: [1, 8, (18), 8, 1];
n=3: [1, 24, 195, (560), 195, 24, 1];
n=4: [1, 64, 1540, 16576, (68614), 16576, 1540, 64, 1];
n=5: [1, 160, 10245, 328320, 5273610, (34210752), 5273610, 328320, ...];
n=6: [1, 384, 61446, 5244800, 251904015, 6458183424, (69223161876), ...];
n=7: [1, 896, 344071, 73405696, 9396961301, 721848120448, 30814514741283, (564393502852608), ...]; ...
where the above central coefficients in parenthesis form this sequence.
		

Crossrefs

Cf. A188203 (exp); variants: A002426, A186925.

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * Binomial[n-k, n-2k] * 2^(n*(n-2k)), {k,0,Floor[n/2]}], {n,0,20}] (* Vaclav Kotesovec, Feb 11 2015 *)
  • PARI
    {a(n)=polcoeff((1+2^n*x+x^2)^n,n)}
    
  • PARI
    {a(n)=sum(k=0,n\2,binomial(n, k)*binomial(n-k, n-2*k)*2^(n*(n-2*k)))}

Formula

a(n) = Sum_{k=0..floor(n/2)} C(n, k)*C(n-k, n-2k) * 2^(n*(n-2k)).
Equals the logarithmic derivative of A188203 (ignoring initial term).
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Feb 12 2015

A307905 Coefficient of x^n in (1 + n*x + x^3)^n.

Original entry on oeis.org

1, 1, 4, 30, 304, 3875, 59631, 1076383, 22309120, 522262245, 13631508400, 392535959156, 12362973152751, 422774554883590, 15600699362473876, 617888566413340503, 26145122799198386944, 1177107512023013681429, 56185125998674634494980, 2834081165961033246374350
Offset: 0

Views

Author

Seiichi Manyama, May 05 2019

Keywords

Crossrefs

Programs

  • Maple
    f:= n -> coeff((1+n*x+x^3)^n,x,n):
    map(f, [$0..30]); # Robert Israel, Mar 27 2023
  • Mathematica
    Flatten[{1, Table[n^n * HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2, 1}, -27/(4*n^3)], {n, 1, 20}]}] (* Vaclav Kotesovec, May 05 2019 *)
  • PARI
    {a(n) = polcoef((1+n*x+x^3)^n, n)}
    
  • PARI
    {a(n) = sum(k=0, n\3, n^(n-3*k)*binomial(n,3*k)*binomial(3*k,k))}

Formula

a(n) = Sum_{k=0..floor(n/3)} n^(n-3*k) * binomial(n,3*k) * binomial(3*k,k).
a(n) ~ c * n^n, where c = Sum_{k>=0} 1/(k!*(2*k)!) = HypergeometricPFQ[{}, {1/2, 1}, 1/4] = 1.52106585051363080966025715155941607334728986626976774617... - Vaclav Kotesovec, May 05 2019

A360349 G.f. A(x) = exp( Sum_{k>=1} A360348(k) * x^k/k ), where A360348(k) = [y^k*x^k/k] log( Sum_{m>=0} (1 + m*y + y^2)^m * x^m ) for k >= 1.

Original entry on oeis.org

1, 1, 5, 38, 391, 5077, 79535, 1458264, 30621237, 724555611, 19076629520, 553236991215, 17525729241605, 602215048797900, 22312035980459259, 886733059906749795, 37631474149766344476, 1698581174869953607957, 81257725943229600518977, 4106922637708383448243974
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2023

Keywords

Comments

Related series: M(x) = exp( Sum_{k>=1} A002426(k) * x^k/k ), where M(x) = 1 + x*M(x) + x^2*M(x)^2 is the Motzkin function (A001006) and A002426(k) = [y^k*x^k/k] log( Sum_{m>=0} (1 + y + y^2)^m * x^m ) for k >= 1.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 38*x^3 + 391*x^4 + 5077*x^5 + 79535*x^6 + 1458264*x^7 + 30621237*x^8 + 724555611*x^9 + ...
such that
log(A(x)) = x + 9*x^2/2 + 100*x^3/3 + 1381*x^4/4 + 22771*x^5/5 + 435138*x^6/6 + 9442049*x^7/7 + 229265109*x^8/8 + ... + A360348(n)*x^n/n + ...
where A360348(n) equals the coefficient of y^n*x^n/n in the logarithmic series:
log( Sum_{m>=0} (1 + m*y + y^2)^m * x^m ) = (y^2 + y + 1)*x + (y^4 + 6*y^3 + 9*y^2 + 6*y + 1)*x^2/2 + (y^6 + 15*y^5 + 63*y^4 + 100*y^3 + 63*y^2 + 15*y + 1)*x^3/3 + (y^8 + 28*y^7 + 242*y^6 + 872*y^5 + 1381*y^4 + 872*y^3 + 242*y^2 + 28*y + 1)*x^4/4 + (y^10 + 45*y^9 + 665*y^8 + 4430*y^7 + 14545*y^6 + 22771*y^5 + 14545*y^4 + 4430*y^3 + 665*y^2 + 45*y + 1)*x^5/5 + ...
		

Crossrefs

Programs

  • PARI
    {A360348(n) = n * polcoeff( polcoeff( log( sum(m=0, n+1, (1 + m*y + y^2)^m *x^m ) +x*O(x^n) ), n, x), n, y)}
    {a(n) = polcoeff( exp( sum(m=1,n, A360348(m)*x^m/m ) +x*O(x^n)),n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ BesselI(0, 2) * n^n. - Vaclav Kotesovec, Feb 12 2023
Showing 1-10 of 14 results. Next