cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A186925 Coefficient of x^n in (1+n*x+x^2)^n.

Original entry on oeis.org

1, 1, 6, 45, 454, 5775, 88796, 1602447, 33213510, 777665691, 20302315252, 584774029983, 18422140045596, 630132567760345, 23257790717110392, 921362075184792825, 38994274473840538182, 1755943506127367745795, 83829045032101462204100, 4229207755493569286374167
Offset: 0

Views

Author

Emanuele Munarini, Mar 02 2011

Keywords

Crossrefs

Main diagonal of A292627.

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+n*x+x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 02 2011
    
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^(n-2*k), {k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)
    Table[GegenbauerC[n, -n, -n/2] + KroneckerDelta[n, 0], {n, 0, 100}] (* Emanuele Munarini, Oct 20 2016 *)
    Table[SeriesCoefficient[(1 + n*x + x^2)^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 13 2023 *)
  • Maxima
    a(n):=coeff(expand((1+n*x+x^2)^n),x,n);
    
  • Maxima
    makelist(ultraspherical(n,-n,-n/2),n,0,12); /* Emanuele Munarini, Oct 20 2016 */
    makelist(a(n),n,0,20);
    
  • PARI
    {a(n) = sum(k=0, n, (n-2)^(n-k)*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, May 01 2019
    
  • PARI
    a(n) = polcoef((1+n*x+x^2)^n, n); \\ Michel Marcus, May 01 2019

Formula

a(n) = [x^n] (1+n*x+x^2)^n.
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, n-2*k)*n^(n-2*k).
a(n) ~ BesselI(0,2) * n^n. - Vaclav Kotesovec, Apr 17 2014
a(n) = GegenbauerPoly(n,-n,-n/2). - Emanuele Munarini, Oct 20 2016
From Ilya Gutkovskiy, Sep 20 2017: (Start)
a(n) = [x^n] 1/sqrt((1 + 2*x - n*x)*(1 - 2*x - n*x)).
a(n) = n! * [x^n] exp(n*x)*BesselI(0,2*x). (End)
From Seiichi Manyama, May 01 2019: (Start)
a(n) = Sum_{k=0..n} (n-2)^(n-k) * binomial(n,k) * binomial(2*k,k).
a(n) = Sum_{k=0..n} (n+2)^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). (End)
a(n) = (1/4)^n * Sum_{k=0..n} (n-2)^k * (n+2)^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A307883 Square array read by descending antidiagonals: T(n, k) where column k is the expansion of 1/sqrt(1 - 2*(k+1)*x + ((k-1)*x)^2).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 13, 20, 1, 1, 5, 22, 63, 70, 1, 1, 6, 33, 136, 321, 252, 1, 1, 7, 46, 245, 886, 1683, 924, 1, 1, 8, 61, 396, 1921, 5944, 8989, 3432, 1, 1, 9, 78, 595, 3606, 15525, 40636, 48639, 12870, 1, 1, 10, 97, 848, 6145, 33876, 127905, 281488, 265729, 48620, 1
Offset: 0

Views

Author

Seiichi Manyama, May 02 2019

Keywords

Comments

Column k is the diagonal of the rational function 1 / ((1-x)*(1-y) - k*x*y). - Seiichi Manyama, Jul 11 2020
More generally, column k is the diagonal of the rational function r / ((1-r*x)*(1-r*y) + r-1 - (k+r-1)*r*x*y) for any nonzero real number r. - Seiichi Manyama, Jul 22 2020

Examples

			Square array begins:
  1,   1,    1,     1,      1,      1,      1, ...
  1,   2,    3,     4,      5,      6,      7, ...
  1,   6,   13,    22,     33,     46,     61, ...
  1,  20,   63,   136,    245,    396,    595, ...
  1,  70,  321,   886,   1921,   3606,   6145, ...
  1, 252, 1683,  5944,  15525,  33876,  65527, ...
  1, 924, 8989, 40636, 127905, 324556, 712909, ...
Seen as a triangle T(n, k):
  [0] 1;
  [1] 1, 1;
  [2] 1, 2,  1;
  [3] 1, 3,  6,   1;
  [4] 1, 4, 13,  20,    1;
  [5] 1, 5, 22,  63,   70,     1;
  [6] 1, 6, 33, 136,  321,   252,     1;
  [7] 1, 7, 46, 245,  886,  1683,   924,     1;
  [8] 1, 8, 61, 396, 1921,  5944,  8989,  3432,     1;
  [9] 1, 9, 78, 595, 3606, 15525, 40636, 48639, 12870, 1;
		

Crossrefs

Columns k=0..6 give A000012, A000984, A001850, A069835, A084771, A084772, A098659.
Main diagonal gives A187021.
T(n,n+1) gives A335309.

Programs

  • Maple
    # Seen as a triangle read by rows:
    T := (n, k) -> simplify(hypergeom([-k, -k], [1], n - k)):
    seq(lprint(seq(T(n, k), k = 0..n)), n = 0..9);  # Peter Luschny, May 13 2024
  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
    (* Seen as a triangle read by rows: *)
    T[n_, k_] := HypergeometricPFQ[{-k, -k}, {1}, n - k];
    Flatten[Table[T[n, k], {n, 0, 10}, {k, 0, n}]] (* Detlef Meya, May 13 2024 *)

Formula

T(n,k) is the coefficient of x^n in the expansion of (1 + (k+1)*x + k*x^2)^n.
T(n,k) = Sum_{j=0..n} k^j * binomial(n,j)^2.
T(n,k) = Sum_{j=0..n} (k-1)^(n-j) * binomial(n,j) * binomial(n+j,j).
n * T(n,k) = (k+1) * (2*n-1) * T(n-1,k) - (k-1)^2 * (n-1) * T(n-2,k).
T(n,k) = hypergeom([-k, -k], [1], n - k), (triangular form). - Detlef Meya, May 13 2024

A187018 Coefficient of x^n in (1 + x + n*x^2)^n.

Original entry on oeis.org

1, 1, 5, 19, 145, 851, 7741, 58605, 600769, 5420035, 61026901, 628076153, 7648488145, 87388647373, 1138801242125, 14182492489651, 196218339243777, 2628971539313875, 38377805385510181, 547815690902283225, 8395817775835635601, 126725586542235932329
Offset: 0

Views

Author

Emanuele Munarini, Mar 02 2011

Keywords

Examples

			G.f. = 1 + x + 5*x^2 + 19*x^3 + 145*x^4 + 851*x^5 + 7741*x^6 + 58605*x^7 + ...
		

Crossrefs

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+x+n*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
    
  • Maple
    A187018:= n -> simplify( n^(n/2)*GegenbauerC(n, -n, -1/(2*sqrt(n))) );
    1, seq(A187018(n), n = 1..30); # G. C. Greubel, May 31 2020
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^k, {k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)
    a[ n_]:= SeriesCoefficient[ (1 + x + n*x^2)^n, {x, 0, n}]; (* Michael Somos, Dec 12 2014 *)
    Table[If[n == 0, 1, Simplify[n^(n/2) GegenbauerC[n, -n, -1/(2 Sqrt[n])]]], {n, 0, 12}] (* Emanuele Munarini, Oct 20 2016 *)
  • Maxima
    a(n):=coeff(expand((1+x+n*x^2)^n),x,n);
    makelist(a(n),n,0,20);
    
  • PARI
    {a(n)=polcoeff(1/sqrt(1 - 2*x - (4*n-1)*x^2 +x*O(x^n)),n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Dec 12 2014
    
  • PARI
    {a(n) = polcoef((1+x+n*x^2)^n, n)} \\ Seiichi Manyama, May 01 2019
    
  • Sage
    [1]+[ n^(n/2)*gegenbauer(n, -n, -1/(2*sqrt(n))) for n in (1..30)] # G. C. Greubel, May 31 2020

Formula

a(n) = [x^n] (1 + x + n*x^2)^n.
a(n) = n^(n/2)*GegenbauerPoly(n,-n,-1/(2*sqrt(n))). - Emanuele Munarini, Oct 20 2016
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, n-2*k)*n^k.
a(n) ~ 2^(n-1/2) * exp(sqrt(n)/2-1/8) * n^(n/2-1/2) / sqrt(Pi). - Vaclav Kotesovec, Apr 17 2014
a(n) = [x^n] 1/sqrt(1 - 2*x - (4*n-1)*x^2). - Paul D. Hanna, Dec 12 2014
a(n) = n! * [x^n] exp(x) * BesselI(0,2*sqrt(n)*x). - Ilya Gutkovskiy, May 31 2020

A241247 a(n) = Sum_{k=0..n} n^k * binomial(n,k)^3.

Original entry on oeis.org

2, 21, 352, 8065, 231876, 7951069, 314931968, 14095941633, 701590424500, 38358147922501, 2281458125531520, 146469277526152321, 10084388675810865248, 740560093656498673965, 57738578482070455269376, 4760258648137662340202497, 413561386818608994516491316
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 18 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[n^k*Binomial[n,k]^3,{k,0,n}],{n,1,20}]
    Table[HypergeometricPFQ[{-n,-n,-n},{1,1},-n],{n,1,20}]
  • PARI
    a(n) = sum(k=0, n, n^k*binomial(n,k)^3); \\ Michel Marcus, Jul 11 2020

Formula

a(n) ~ exp(1 - 3*n^(1/3)/2 + 3*n^(2/3)) * n^(n-2/3) / (2*Pi*sqrt(3)) * (1 + 5/(4*n^(1/3))).

A307885 Coefficient of x^n in (1 - (n-1)*x - n*x^2)^n.

Original entry on oeis.org

1, 0, -3, 28, -255, 2376, -20195, 71688, 3834369, -187855280, 6676401501, -220595216280, 7180102389889, -234023553073296, 7631745228481725, -245429882267144624, 7501602903392006145, -196609711096827812448, 2542435002501531333949
Offset: 0

Views

Author

Seiichi Manyama, May 02 2019

Keywords

Comments

Also coefficient of x^n in the expansion of 1/sqrt(1 + 2*(n-1)*x + ((n+1)*x)^2).

Crossrefs

Main diagonal of A307884.
Cf. A187021.

Programs

  • Maple
    A307885:= n -> simplify(hypergeom([-n,-n], [1], -n));
    seq(A307885(n), n = 0..30); # G. C. Greubel, May 31 2020
  • Mathematica
    Table[Hypergeometric2F1[-n, -n, 1, -n], {n, 0, 20}] (* Vaclav Kotesovec, May 07 2019 *)
  • PARI
    {a(n) = polcoef((1-(n-1)*x-n*x^2)^n, n)}
    
  • PARI
    {a(n) = sum(k=0, n, (-n)^k*binomial(n, k)^2)}
    
  • PARI
    {a(n) = sum(k=0, n, (-n-1)^(n-k)*binomial(n, k)*binomial(n+k, k))}
    
  • Sage
    [ hypergeometric([-n, -n], [1], -n).simplify_hypergeometric() for n in (0..30)] # G. C. Greubel, May 31 2020

Formula

a(n) = Sum_{k=0..n} (-n)^k * binomial(n,k)^2.
a(n) = Sum_{k=0..n} (-n-1)^(n-k) * binomial(n,k) * binomial(n+k,k).
a(n) = Hypergeometric2F1(-n, -n, 1, -n). - Vaclav Kotesovec, May 07 2019
a(n) = n! * [x^n] exp((1 - n)*x) * BesselI(0,2*sqrt(-n)*x). - Ilya Gutkovskiy, May 31 2020

A336188 a(n) = Sum_{k=0..n} n^k * binomial(n,k)^n.

Original entry on oeis.org

1, 2, 13, 352, 38401, 16971876, 29359436149, 207003074670848, 5679112509686022145, 636468045901197095750500, 277939985126193076692203962501, 494649880078824954885176565423811200, 3447375085398645453825889951638344722092289, 97424105704407389799712313421357308088296084669504
Offset: 0

Views

Author

Seiichi Manyama, Jul 11 2020

Keywords

Crossrefs

Programs

  • Magma
    [(&+[n^j*Binomial(n,j)^n: j in [0..n]]): n in [0..20]]; // G. C. Greubel, Aug 26 2022
    
  • Mathematica
    Unprotect[Power]; 0^0 = 1; a[n_] := Sum[n^k * Binomial[n, k]^n, {k, 0, n} ]; Array[a, 14, 0] (* Amiram Eldar, Jul 11 2020 *)
  • PARI
    {a(n) = sum(k=0, n, n^k*binomial(n, k)^n)}
    
  • SageMath
    [sum(n^j*binomial(n,j)^n for j in (0..n)) for n in (0..20)] # G. C. Greubel, Aug 26 2022

Formula

Let f(n) = 2^((n+1)*(2*n-1)/2) * n^(log(n)/8) / Pi^((n-1)/2). For sufficiently large n 0.7675... < a(n)/f(n) < 0.7900... - Vaclav Kotesovec, Jul 11 2020
The above bounds of Vaclav Kotesovec can be recast as: |a(n)/f(n) - exp(-1/4)| <= (3*Pi)^(-2) for sufficiently large n. - Peter Luschny, Jul 12 2020
a(n) ~ exp(-1/4) * QPochhammer(exp(-4)) * QPochhammer(-n*exp(-2), exp(-4)) * 2^(n^2 + n/2) / Pi^(n/2) if n is even and a(n) ~ exp(-3/4) * QPochhammer(exp(-4)) * QPochhammer(-n*exp(-4), exp(-4)) * 2^(n^2 + n/2) * sqrt(n) / Pi^(n/2) if n is odd. - Vaclav Kotesovec, Jul 13 2020

A336828 a(n) = Sum_{k=0..n} binomial(n,k)^2 * k^n.

Original entry on oeis.org

1, 1, 8, 108, 2144, 56250, 1836792, 71799504, 3269445888, 169974711630, 9934458411800, 644825382429096, 46022332032100800, 3582265183110626740, 302002255041807372080, 27413749834141448520000, 2665789990569658618398720, 276477318687585566522176470
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 05 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k]^2 k^n, {k, 0, n}], {n, 1, 17}]]
  • PARI
    a(n) = sum(k=0, n, binomial(n, k)^2*k^n); \\ Michel Marcus, Aug 05 2020

Formula

a(n) ~ c * d^n * (n-1)!, where d = (1 + 2*LambertW(exp(-1/2)/2)) / (4*LambertW(exp(-1/2)/2)^2) = 6.476217542109791521947605963458797355564... and c = 0.21617818094152997942246965143216887599763501682724844713834495... - Vaclav Kotesovec, Feb 20 2021

A099169 a(n) = (1/n) * Sum_{k=0..n-1} C(n,k) * C(n,k+1) * (n-1)^k.

Original entry on oeis.org

1, 2, 11, 100, 1257, 20076, 387739, 8766248, 226739489, 6595646860, 212944033051, 7550600079672, 291527929539433, 12169325847587832, 545918747361417291, 26183626498897556176, 1336713063706757646465
Offset: 1

Views

Author

Ralf Stephan, Oct 09 2004

Keywords

Comments

A diagonal of Narayana array (A008550).

Crossrefs

Programs

  • Magma
    A099169:= func< n | (&+[Binomial(n, j)*Binomial(n-1,j)*(n-1)^j/(j+1): j in [0..n-1]]) >;
    [A099169(n): n in [1..30]]; // G. C. Greubel, Feb 16 2021
    
  • Maple
    A099169:= n-> add( binomial(n, j)*binomial(n-1,j)*(n-1)^j/(j+1), j=0..n-1);
    seq( A099169(n), n=1..30) # G. C. Greubel, Feb 16 2021
  • Mathematica
    Join[{1},Table[Sum[Binomial[n,k]Binomial[n,k+1](n-1)^k,{k,0,n-1}]/n,{n,2,20}]] (* Harvey P. Dale, Oct 07 2013 *)
    Table[Hypergeometric2F1[1-n,-n,2,-1+n],{n,1,20}] (* Vaclav Kotesovec, Apr 18 2014 *)
  • PARI
    a(n) = (1/n) * sum(k=0, n-1, binomial(n,k) * binomial(n,k+1) * (n-1)^k); \\ Michel Marcus, Feb 16 2021
  • Sage
    def A099169(n): return sum( binomial(n, j)*binomial(n-1,j)*(n-1)^j/(j+1) for j in [0..n-1])
    [A099169(n) for n in [1..30]] # G. C. Greubel, Feb 16 2021
    

Formula

From Vaclav Kotesovec, Apr 18 2014, extended Dec 01 2021: (Start)
a(n) = Hypergeometric2F1([1-n,-n], [2], -1+n).
a(n) ~ exp(2*sqrt(n)-2) * n^(n-7/4) / (2*sqrt(Pi)) * (1 + 119/(48*sqrt(n))). (End)

A234971 a(n) = Sum_{k=0..n} n^k * binomial(n,k)^4.

Original entry on oeis.org

1, 2, 37, 1000, 38401, 1896876, 112124629, 7679202336, 595411451905, 51348552829300, 4861414171762501, 500163335120177136, 55466421261812540929, 6585829687114412247800, 832587068884779776276661, 111541424966889778569909376, 15771414153994526723881828353
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2014

Keywords

Comments

In general, Sum_{k=0..n} n^k * binomial(n,k)^p is asymptotic to (1+n^(1/p))^(n*p+p-1) / sqrt(p * (2*Pi)^(p-1) * n^(p-1/p)).

Crossrefs

Programs

  • Maple
    a := n -> hypergeom([-n, -n, -n, -n], [1, 1, 1], n):
    seq(simplify(a(n)), n=0..16); # Peter Luschny, Dec 22 2020
  • Mathematica
    Table[Sum[If[n==k==0, 1, n^k]*Binomial[n, k]^4, {k, 0, n}], {n, 0, 20}] (* offset adapted by Georg Fischer, Jan 04 2021 *)
  • PARI
    a(n) = sum(k=0, n, n^k * binomial(n,k)^4); \\ Michel Marcus, Jan 04 2021

Formula

a(n) ~ (1+n^(1/4))^(4*n+3) / (4*sqrt(2) * Pi^(3/2) * n^(15/8)).
a(n) = hypergeom([-n, -n, -n, -n], [1, 1, 1], n). - Peter Luschny, Dec 22 2020

Extensions

a(0) = 1 prepended by Peter Luschny, Dec 22 2020

A330260 a(n) = n! * Sum_{k=0..n} binomial(n,k) * n^(n - k) / k!.

Original entry on oeis.org

1, 2, 17, 352, 13505, 830126, 74717857, 9263893892, 1513712421377, 315230799073690, 81499084718806001, 25612081645835777192, 9615370149488574778177, 4250194195208050117007942, 2184834047906975645398282625, 1292386053018890618812398220876
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2019

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*&+[Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
  • Mathematica
    Join[{1}, Table[n! Sum[Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
    Join[{1}, Table[n^n n! LaguerreL[n, -1/n], {n, 1, 15}]]
    Table[n! SeriesCoefficient[Exp[x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = n! * sum(k=0, n, binomial(n,k) * n^(n-k)/k!); \\ Michel Marcus, Dec 18 2019
    

Formula

a(n) = n! * [x^n] exp(x/(1 - n*x)) / (1 - n*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k * k!.
a(n) ~ sqrt(2*Pi) * BesselI(0,2) * n^(2*n + 1/2) / exp(n). - Vaclav Kotesovec, Dec 18 2019
Showing 1-10 of 14 results. Next