A307884
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 + 2*(k-1)*x + ((k+1)*x)^2).
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, -1, -2, 1, 1, -2, -3, 0, 1, 1, -3, -2, 11, 6, 1, 1, -4, 1, 28, 1, 0, 1, 1, -5, 6, 45, -74, -81, -20, 1, 1, -6, 13, 56, -255, -92, 141, 0, 1, 1, -7, 22, 55, -554, 477, 1324, 363, 70, 1, 1, -8, 33, 36, -959, 2376, 2689, -3656, -1791, 0, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
1, -2, -3, -2, 1, 6, 13, ...
1, 0, 11, 28, 45, 56, 55, ...
1, 6, 1, -74, -255, -554, -959, ...
1, 0, -81, -92, 477, 2376, 6475, ...
1, -20, 141, 1324, 2689, -804, -20195, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, (-k)^j] * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
A307862
Coefficient of x^n in (1 + x - n*x^2)^n.
Original entry on oeis.org
1, 1, -3, -17, 49, 651, -1259, -38023, 26433, 2969299, 2225101, -289389891, -692529551, 33718183045, 143578976997, -4559187616649, -29119975483135, 699788001188403, 6188699469443869, -119828491083854707, -1404529670244379599, 22563726025297759345, 341997845736800473397
Offset: 0
-
A307862:= n -> simplify(hypergeom([-n/2, (1-n)/2], [1], -4*n));
seq(A307862(n), n = 0..30); # G. C. Greubel, May 31 2020
-
a[n_]:= SeriesCoefficient[(1 +x -n*x^2)^n, {x,0,n}]; Table[a[n], {n,0,30}] (* G. C. Greubel, May 31 2020 *)
-
{a(n) = polcoef((1+x-n*x^2)^n, n)}
-
{a(n) = sum(k=0, n\2, (-n)^k*binomial(n, k)*binomial(n-k, k))}
-
{a(n) = sum(k=0, n\2, (-n)^k*binomial(n, 2*k)*binomial(2*k, k))}
-
[ hypergeometric([-n/2, (1-n)/2], [1], -4*n).simplify_hypergeometric() for n in (0..30)] # G. C. Greubel, May 31 2020
A335310
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * (-n)^(n-k).
Original entry on oeis.org
1, 1, -2, 11, -74, 477, -804, -84425, 3315334, -102211207, 3005297956, -88338323709, 2627003399164, -78764141488043, 2341929797646648, -66394419743289105, 1609460569459689286, -18001777147777896975, -1625299659961386724524, 196005371138608184827003
Offset: 0
-
Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] (-n)^(n - k), {k, 0, n}], {n, 1, 19}]]
Table[SeriesCoefficient[1/Sqrt[1 + 2 (n - 2) x + n^2 x^2], {x, 0, n}], {n, 0, 19}]
Table[n! SeriesCoefficient[Exp[(2 - n) x] BesselI[0, 2 Sqrt[1 - n] x], {x, 0, n}], {n, 0, 19}]
Table[Hypergeometric2F1[-n, -n, 1, 1 - n], {n, 0, 19}]
-
a(n) = sum(k=0, n, binomial(n,k)^2*(1-n)^k); \\ Michel Marcus, Jun 01 2020
A336180
a(n) = Sum_{k=0..n} (-n)^k * binomial(n,k)^3.
Original entry on oeis.org
1, 0, -11, 136, -639, -25624, 1133245, -27431424, 259448833, 17402599792, -1405909697499, 63884679938960, -1830503703899519, -5324845289379264, 5494299851213052685, -496909924804074650624, 30201149245542631276545, -1236819213672144144878752, 5410434345252588202534741
Offset: 0
-
a := n -> hypergeom([-n, -n, -n], [1, 1], n):
seq(simplify(a(n)), n=0..18); # Peter Luschny, Dec 22 2020
-
Array[Function[n, 1 + Sum[(-n)^k Binomial[n, k]^3, {k, n}]], 19, 0] (* Jan Mangaldan, Jul 14 2020 *)
-
{a(n) = sum(k=0, n, (-n)^k*binomial(n, k)^3)}
A336728
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} (-n)^(n-k) * binomial(n,k) * binomial(n,k-1) for n > 0.
Original entry on oeis.org
1, 1, -1, 1, 9, -174, 2575, -38219, 588833, -9274418, 141253551, -1739881142, -753419447, 1379742127908, -83720072007585, 4059017293956301, -184613801568558975, 8254420480122200214, -369177108304219471457, 16608406418618863804990, -750673988803431836351799
Offset: 0
-
a[0] = 1; a[n_] := Sum[(-n)^(n - k) * Binomial[n, k] * Binomial[n , k - 1], {k, 1, n}] / n; Array[a, 21, 0] (* Amiram Eldar, Aug 02 2020 *)
-
{a(n) = if(n==0, 1, sum(k=1, n, (-n)^(n-k)*binomial(n, k)*binomial(n, k-1))/n)}
-
{a(n) = sum(k=0, n, (-n)^k*(n+1)^(n-k)*binomial(n, k)*binomial(n+k, n)/(k+1))}
A330497
a(n) = n! * Sum_{k=0..n} (-1)^k * binomial(n,k) * n^(n - k) / k!.
Original entry on oeis.org
1, 0, 1, 26, 1089, 70124, 6495985, 821315214, 136115947009, 28651724077976, 7470040450004001, 2363470644596843330, 892244303052345224641, 396227360441775922668036, 204487588996059177697597969, 121370399839482643287189048374
Offset: 0
-
[Factorial(n)*&+[(-1)^k*Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
-
Join[{1}, Table[n! Sum[(-1)^k Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
Join[{1}, Table[n^n n! LaguerreL[n, 1/n], {n, 1, 15}]]
Table[n! SeriesCoefficient[Exp[-x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]
A383133
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(n*k,k) * n^k.
Original entry on oeis.org
1, 0, 17, 1889, 412225, 151448249, 84430503361, 66535567456546, 70456680210155009, 96530372235620300465, 166169585125820280654001, 351113456811120647774884511, 893491183170443755035588745153, 2695374684029443253628238600963667, 9511442599320236554084097413617603681
Offset: 0
-
Unprotect[Power]; 0^0 = 1; Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[n k, k] n^k, {k, 0, n}], {n, 0, 14}]
Showing 1-7 of 7 results.
Comments