cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A008550 Table T(n,k), n>=0 and k>=0, read by antidiagonals: the k-th column given by the k-th Narayana polynomial.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 14, 11, 4, 1, 1, 1, 42, 45, 19, 5, 1, 1, 1, 132, 197, 100, 29, 6, 1, 1, 1, 429, 903, 562, 185, 41, 7, 1, 1, 1, 1430, 4279, 3304, 1257, 306, 55, 8, 1, 1, 1, 4862, 20793, 20071, 8925, 2426, 469, 71, 9, 1, 1
Offset: 0

Views

Author

Philippe Deléham, Jan 23 2004

Keywords

Comments

Mirror image of A243631. - Philippe Deléham, Sep 26 2014

Examples

			Row n=0:  1, 1,  1,   1,    1,     1,      1, ... see A000012.
Row n=1:  1, 1,  2,   5,   14,    42,    132, ... see A000108.
Row n=2:  1, 1,  3,  11,   45,   197,    903, ... see A001003.
Row n=3:  1, 1,  4,  19,  100,   562,   3304, ... see A007564.
Row n=4:  1, 1,  5,  29,  185,  1257,   8925, ... see A059231.
Row n=5:  1, 1,  6,  41,  306,  2426,  20076, ... see A078009.
Row n=6:  1, 1,  7,  55,  469,  4237,  39907, ... see A078018.
Row n=7:  1, 1,  8,  71,  680,  6882,  72528, ... see A081178.
Row n=8:  1, 1,  9,  89,  945, 10577, 123129, ... see A082147.
Row n=9:  1, 1, 10, 109, 1270, 15562, 198100, ... see A082181.
Row n=10: 1, 1, 11, 131,  161,  1661,  22101, ... see A082148.
Row n=11: 1, 1, 12, 155, 2124, 30482, 453432, ... see A082173.
... - _Philippe Deléham_, Apr 03 2013
The first few rows of the antidiagonal triangle are:
  1;
  1,  1;
  1,  1,  1;
  1,  2,  1,  1;
  1,  5,  3,  1, 1;
  1, 14, 11,  4, 1, 1;
  1, 42, 45, 19, 5, 1, 1; - _G. C. Greubel_, Feb 15 2021
		

Crossrefs

Main diagonal is A242369.
A diagonal is in A099169.
Cf. A204057 (another version), A088617, A243631.
Cf. A132745.

Programs

  • Magma
    [Truncate(HypergeometricSeries(k-n, k-n+1, 2, k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 15 2021
  • Maple
    gf := n -> 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1):
    for n from 0 to 11 do PolynomialTools:-CoefficientList(convert( series(gf(n),x,12),polynom),x) od; # Peter Luschny, Nov 17 2014
  • Mathematica
    (* First program *)
    Unprotect[Power]; Power[0 | 0, 0 | 0] = 1; Protect[Power]; Table[Function[n, Sum[Apply[Binomial[#1 + #2, #1] Binomial[#1, #2]/(#2 + 1) &, {k, j}]*n^j*(1 - n)^(k - j), {j, 0, k}]][m - k + 1] /. k_ /; k <= 0 -> 1, {m, -1, 9}, {k, m + 1, 0, -1}] // Flatten (* Michael De Vlieger, Aug 10 2017 Note: this code renders 0^0 = 1. To restore normal Power functionality: Unprotect[Power]; ClearAll[Power]; Protect[Power] *)
    (* Second program *)
    Table[Hypergeometric2F1[1-n+k, k-n, 2, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 15 2021 *)
  • Sage
    flatten([[hypergeometric([k-n, k-n+1], [2], k).simplify_hypergeometric() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 15 2021
    

Formula

T(n, k) = Sum_{j>0} A001263(k, j)*n^(j-1); T(n, 0)=1.
T(n, k) = Sum_{j, 0<=j<=k} A088617(k, j)*n^j*(1-n)^(k-j).
The o.g.f. of row n is gf(n) = 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1). - Peter Luschny, Nov 17 2014
G.f. of row n: 1/(1 - x/(1 - n*x/(1 - x/(1 - n*x/(1 - x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Aug 10 2017
T(n, k) = Hypergeometric2F1([k-n, k-n+1], [2], k), as a number triangle. - G. C. Greubel, Feb 15 2021

A243631 Square array of Narayana polynomials N_n evaluated at the integers, A(n,k) = N_n(k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 11, 14, 1, 1, 1, 5, 19, 45, 42, 1, 1, 1, 6, 29, 100, 197, 132, 1, 1, 1, 7, 41, 185, 562, 903, 429, 1, 1, 1, 8, 55, 306, 1257, 3304, 4279, 1430, 1, 1, 1, 9, 71, 469, 2426, 8925, 20071, 20793, 4862, 1
Offset: 0

Views

Author

Peter Luschny, Jun 08 2014

Keywords

Comments

Mirror image of A008550. - Philippe Deléham, Sep 26 2014

Examples

			   [0]  [1]      [2]      [3]      [4]      [5]      [6]     [7]
[0] 1,   1,       1,       1,       1,       1,       1,       1
[1] 1,   1,       1,       1,       1,       1,       1,       1
[2] 1,   2,       3,       4,       5,       6,       7,       8 .. A000027
[3] 1,   5,      11,      19,      29,      41,      55,      71 .. A028387
[4] 1,  14,      45,     100,     185,     306,     469,     680 .. A090197
[5] 1,  42,     197,     562,    1257,    2426,    4237,    6882 .. A090198
[6] 1, 132,     903,    3304,    8925,   20076,   39907,   72528 .. A090199
[7] 1, 429,    4279,   20071,   65445,  171481,  387739,  788019 .. A090200
   A000108, A001003, A007564, A059231, A078009, A078018, A081178
First few rows of the antidiagonal triangle are:
  1;
  1, 1;
  1, 1, 1;
  1, 1, 2,  1;
  1, 1, 3,  5,  1;
  1, 1, 4, 11, 14,  1;
  1, 1, 5, 19, 45, 42, 1; - _G. C. Greubel_, Feb 16 2021
		

Crossrefs

Cf. A001263, A008550 (mirror), A204057 (another version), A242369 (main diagonal), A099169 (diagonal), A307883, A336727.
Cf. A132745.

Programs

  • Magma
    A243631:= func< n,k | n eq 0 select 1 else (&+[ Binomial(n,j)^2*k^j*(n-j)/(n*(j+1)): j in [0..n-1]]) >;
    [A243631(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
  • Maple
    # Computed with Narayana polynomials:
    N := (n,k) -> binomial(n,k)^2*(n-k)/(n*(k+1));
    A := (n,x) -> `if`(n=0, 1, add(N(n,k)*x^k, k=0..n-1));
    seq(print(seq(A(n,k), k=0..7)), n=0..7);
    # Computed by recurrence:
    Prec := proc(n,N,k) option remember; local A,B,C,h;
    if n = 0 then 1 elif n = 1 then 1+N+(1-N)*(1-2*k)
    else h := 2*N-n; A := n*h*(1+N-n); C := n*(h+2)*(N-n);
    B := (1+h-n)*(n*(1-2*k)*(1+h)+2*k*N*(1+N));
    (B*Prec(n-1,N,k) - C*Prec(n-2,N,k))/A fi end:
    T := (n, k) -> Prec(n,n,k)/(n+1);
    seq(print(seq(T(n,k), k=0..7)), n=0..7);
    # Array by o.g.f. of columns:
    gf := n -> 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1):
    for n from 0 to 11 do PolynomialTools:-CoefficientList(convert( series(gf(n), x, 12), polynom), x) od; # Peter Luschny, Nov 17 2014
    # Row n by linear recurrence:
    rec := n -> a(x) = add((-1)^(k+1)*binomial(n,k)*a(x-k), k=1..n):
    ini := n -> seq(a(k) = A(n,k), k=0..n): # for A see above
    row := n -> gfun:-rectoproc({rec(n),ini(n)},a(x),list):
    for n from 1 to 7 do row(n)(8) od; # Peter Luschny, Nov 19 2014
  • Mathematica
    MatrixForm[Table[JacobiP[n,1,-2*n-1,1-2*x]/(n+1), {n,0,7},{x,0,7}]]
    Table[Hypergeometric2F1[1-k, -k, 2, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
  • Sage
    def NarayanaPolynomial():
        R = PolynomialRing(ZZ, 'x')
        D = [1]
        h = 0
        b = True
        while True:
            if b :
                for k in range(h, 0, -1):
                    D[k] += x*D[k-1]
                h += 1
                yield R(expand(D[0]))
                D.append(0)
            else :
                for k in range(0, h, 1):
                    D[k] += D[k+1]
            b = not b
    NP = NarayanaPolynomial()
    for _ in range(8):
        p = next(NP)
        [p(k) for k in range(8)]
    
  • Sage
    def A243631(n,k): return 1 if n==0 else sum( binomial(n,j)^2*k^j*(n-j)/(n*(j+1)) for j in [0..n-1])
    flatten([[A243631(k,n-k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Feb 16 2021
    

Formula

T(n, k) = 2F1([1-n, -n], [2], k), 2F1 the hypergeometric function.
T(n, k) = P(n,1,-2*n-1,1-2*k)/(n+1), P the Jacobi polynomials.
T(n, k) = sum(j=0..n-1, binomial(n,j)^2*(n-j)/(n*(j+1))*k^j), for n>0.
For a recurrence see the second Maple program.
The o.g.f. of column n is gf(n) = 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1). - Peter Luschny, Nov 17 2014
T(n, k) ~ (sqrt(k)+1)^(2*n+1)/(2*sqrt(Pi)*k^(3/4)*n^(3/2)). - Peter Luschny, Nov 17 2014
The n-th row can for n>=1 be computed by a linear recurrence, a(x) = sum(k=1..n, (-1)^(k+1)*binomial(n,k)*a(x-k)) with initial values a(k) = p(n,k) for k=0..n and p(n,x) = sum(j=0..n-1, binomial(n-1,j)*binomial(n,j)*x^j/(j+1)) (implemented in the fourth Maple script). - Peter Luschny, Nov 19 2014
(n+1) * T(n,k) = (k+1) * (2*n-1) * T(n-1,k) - (k-1)^2 * (n-2) * T(n-2,k) for n>1. - Seiichi Manyama, Aug 08 2020
Sum_{k=0..n} T(k, n-k) = Sum_{k=0..n} 2F1([-k, 1-k], [2], n-k) = A132745(n). - G. C. Greubel, Feb 16 2021

A302286 a(n) = [x^n] 1/(1 - n*x - x/(1 - n*x - x/(1 - n*x - x/(1 - n*x - x/(1 - ...))))), a continued fraction.

Original entry on oeis.org

1, 2, 12, 116, 1530, 25422, 507696, 11814728, 313426350, 9324499610, 307171539576, 11091813369276, 435408606414964, 18453269887229478, 839464708754178240, 40786587211854543120, 2107367668847505288726, 115352793604678609311282, 6667002839420189781109800, 405656528458830256952396420
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 04 2018

Keywords

Crossrefs

Main diagonal of A247507.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - n x + ContinuedFractionK[-x, 1 - n x, {k, 1, n}]), {x, 0, n}], {n, 0, 19}]
    Table[SeriesCoefficient[(1 - n x - Sqrt[1 - (2 n + 4) x + n^2 x^2])/(2 x), {x, 0, n}], {n, 0, 19}]
    Join[{1}, Table[(1/n) Sum[(n + 1)^k Binomial[n, k] Binomial[n, k - 1], {k, 0, n}], {n, 1, 19}]]
    Table[(n + 1) Hypergeometric2F1[1 - n, -n, 2, n + 1], {n, 0, 19}]

Formula

a(n) = [x^n] (1 - n*x - sqrt(1 - (2*n + 4)*x + n^2*x^2))/(2*x).
a(0) = 1; a(n) = (1/n)*Sum_{k=0..n} (n + 1)^k*binomial(n,k)*binomial(n,k-1).
a(n) = A247507(n,n).
a(n) ~ exp(2*sqrt(n)) * n^(n - 3/4) / (2*sqrt(Pi)). - Vaclav Kotesovec, Jun 08 2019
Showing 1-3 of 3 results.