cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A132745 Row sums of (A008550 formatted as a triangular array).

Original entry on oeis.org

1, 2, 3, 5, 11, 32, 114, 467, 2130, 10642, 57629, 335381, 2082582, 13716502, 95352529, 696790819, 5334094259, 42649956716, 355261078352, 3075741331481, 27620835538407, 256810928552476, 2468108094076860, 24481671811988907, 250296546308500181, 2634309876797453868, 28509045368598994348
Offset: 0

Views

Author

Philippe Deléham, Nov 21 2007

Keywords

Crossrefs

Programs

  • Magma
    A243631:= func< n,k | n eq 0 select 1 else (&+[ Binomial(n,j)^2*k^j*(n-j)/(n*(j+1)): j in [0..n-1]]) >;
    A132745:= func< n | (&+[A243631(k,n-k): k in [0..n]]) >;
    [A132745(n): n in [0..30]]; // G. C. Greubel, Feb 16 2021
  • Mathematica
    Table[Sum[Hypergeometric2F1[1-k, -k, 2, n-k], {k,0,n}], {n,0,30}] (* G. C. Greubel, Feb 16 2021 *)
  • Sage
    def A243631(n,k): return 1 if n==0 else sum( binomial(n,j)^2*k^j*(n-j)/(n*(j+1)) for j in [0..n-1])
    def A132745(n): return sum( A243631(k, n-k) for k in [0..n] )
    [A132745(n) for n in [0..30]] # G. C. Greubel, Feb 16 2021
    

Formula

From G. C. Greubel, Feb 16 2021: (Start)
a(n) = Sum_{k=0..n} Hypergeometric2F1([1-n+k, k-n], [2], k).
a(n) = Sum_{k=0..n} Hypergeometric2F1([1-k, -k], [2], n-k).
a(n) = 1 + Sum_{k=1..n} Sum_{j=0..k-1} binomial(k,j)^2 * ((k-j)*(n-k)^j/(k*(j+1))).
a(n) = 1 + Sum_{k=1..n} Sum_{j=0..k-1} A001263(k, k-j) * (n-k)^j. (End)

Extensions

Terms a(11) onward added by G. C. Greubel, Feb 16 2021

A243631 Square array of Narayana polynomials N_n evaluated at the integers, A(n,k) = N_n(k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 11, 14, 1, 1, 1, 5, 19, 45, 42, 1, 1, 1, 6, 29, 100, 197, 132, 1, 1, 1, 7, 41, 185, 562, 903, 429, 1, 1, 1, 8, 55, 306, 1257, 3304, 4279, 1430, 1, 1, 1, 9, 71, 469, 2426, 8925, 20071, 20793, 4862, 1
Offset: 0

Views

Author

Peter Luschny, Jun 08 2014

Keywords

Comments

Mirror image of A008550. - Philippe Deléham, Sep 26 2014

Examples

			   [0]  [1]      [2]      [3]      [4]      [5]      [6]     [7]
[0] 1,   1,       1,       1,       1,       1,       1,       1
[1] 1,   1,       1,       1,       1,       1,       1,       1
[2] 1,   2,       3,       4,       5,       6,       7,       8 .. A000027
[3] 1,   5,      11,      19,      29,      41,      55,      71 .. A028387
[4] 1,  14,      45,     100,     185,     306,     469,     680 .. A090197
[5] 1,  42,     197,     562,    1257,    2426,    4237,    6882 .. A090198
[6] 1, 132,     903,    3304,    8925,   20076,   39907,   72528 .. A090199
[7] 1, 429,    4279,   20071,   65445,  171481,  387739,  788019 .. A090200
   A000108, A001003, A007564, A059231, A078009, A078018, A081178
First few rows of the antidiagonal triangle are:
  1;
  1, 1;
  1, 1, 1;
  1, 1, 2,  1;
  1, 1, 3,  5,  1;
  1, 1, 4, 11, 14,  1;
  1, 1, 5, 19, 45, 42, 1; - _G. C. Greubel_, Feb 16 2021
		

Crossrefs

Cf. A001263, A008550 (mirror), A204057 (another version), A242369 (main diagonal), A099169 (diagonal), A307883, A336727.
Cf. A132745.

Programs

  • Magma
    A243631:= func< n,k | n eq 0 select 1 else (&+[ Binomial(n,j)^2*k^j*(n-j)/(n*(j+1)): j in [0..n-1]]) >;
    [A243631(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
  • Maple
    # Computed with Narayana polynomials:
    N := (n,k) -> binomial(n,k)^2*(n-k)/(n*(k+1));
    A := (n,x) -> `if`(n=0, 1, add(N(n,k)*x^k, k=0..n-1));
    seq(print(seq(A(n,k), k=0..7)), n=0..7);
    # Computed by recurrence:
    Prec := proc(n,N,k) option remember; local A,B,C,h;
    if n = 0 then 1 elif n = 1 then 1+N+(1-N)*(1-2*k)
    else h := 2*N-n; A := n*h*(1+N-n); C := n*(h+2)*(N-n);
    B := (1+h-n)*(n*(1-2*k)*(1+h)+2*k*N*(1+N));
    (B*Prec(n-1,N,k) - C*Prec(n-2,N,k))/A fi end:
    T := (n, k) -> Prec(n,n,k)/(n+1);
    seq(print(seq(T(n,k), k=0..7)), n=0..7);
    # Array by o.g.f. of columns:
    gf := n -> 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1):
    for n from 0 to 11 do PolynomialTools:-CoefficientList(convert( series(gf(n), x, 12), polynom), x) od; # Peter Luschny, Nov 17 2014
    # Row n by linear recurrence:
    rec := n -> a(x) = add((-1)^(k+1)*binomial(n,k)*a(x-k), k=1..n):
    ini := n -> seq(a(k) = A(n,k), k=0..n): # for A see above
    row := n -> gfun:-rectoproc({rec(n),ini(n)},a(x),list):
    for n from 1 to 7 do row(n)(8) od; # Peter Luschny, Nov 19 2014
  • Mathematica
    MatrixForm[Table[JacobiP[n,1,-2*n-1,1-2*x]/(n+1), {n,0,7},{x,0,7}]]
    Table[Hypergeometric2F1[1-k, -k, 2, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
  • Sage
    def NarayanaPolynomial():
        R = PolynomialRing(ZZ, 'x')
        D = [1]
        h = 0
        b = True
        while True:
            if b :
                for k in range(h, 0, -1):
                    D[k] += x*D[k-1]
                h += 1
                yield R(expand(D[0]))
                D.append(0)
            else :
                for k in range(0, h, 1):
                    D[k] += D[k+1]
            b = not b
    NP = NarayanaPolynomial()
    for _ in range(8):
        p = next(NP)
        [p(k) for k in range(8)]
    
  • Sage
    def A243631(n,k): return 1 if n==0 else sum( binomial(n,j)^2*k^j*(n-j)/(n*(j+1)) for j in [0..n-1])
    flatten([[A243631(k,n-k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Feb 16 2021
    

Formula

T(n, k) = 2F1([1-n, -n], [2], k), 2F1 the hypergeometric function.
T(n, k) = P(n,1,-2*n-1,1-2*k)/(n+1), P the Jacobi polynomials.
T(n, k) = sum(j=0..n-1, binomial(n,j)^2*(n-j)/(n*(j+1))*k^j), for n>0.
For a recurrence see the second Maple program.
The o.g.f. of column n is gf(n) = 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1). - Peter Luschny, Nov 17 2014
T(n, k) ~ (sqrt(k)+1)^(2*n+1)/(2*sqrt(Pi)*k^(3/4)*n^(3/2)). - Peter Luschny, Nov 17 2014
The n-th row can for n>=1 be computed by a linear recurrence, a(x) = sum(k=1..n, (-1)^(k+1)*binomial(n,k)*a(x-k)) with initial values a(k) = p(n,k) for k=0..n and p(n,x) = sum(j=0..n-1, binomial(n-1,j)*binomial(n,j)*x^j/(j+1)) (implemented in the fourth Maple script). - Peter Luschny, Nov 19 2014
(n+1) * T(n,k) = (k+1) * (2*n-1) * T(n-1,k) - (k-1)^2 * (n-2) * T(n-2,k) for n>1. - Seiichi Manyama, Aug 08 2020
Sum_{k=0..n} T(k, n-k) = Sum_{k=0..n} 2F1([-k, 1-k], [2], n-k) = A132745(n). - G. C. Greubel, Feb 16 2021

A090200 a(n) = N(7,n), where N(7,x) is the 7th Narayana polynomial.

Original entry on oeis.org

1, 429, 4279, 20071, 65445, 171481, 387739, 788019, 1476841, 2596645, 4335711, 6936799, 10706509, 16025361, 23358595, 33267691, 46422609, 63614749, 85770631, 113966295, 149442421, 193620169, 248117739, 314767651
Offset: 0

Views

Author

Philippe Deléham, Jan 22 2004

Keywords

Crossrefs

Programs

  • Magma
    [n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1: n in [0..30]]; // G. C. Greubel, Feb 16 2021
  • Maple
    A090200:= n-> n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1; seq(A090200(n), n=0..30) # G. C. Greubel, Feb 16 2021
  • Mathematica
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,429,4279,20071,65445,171481,387739},30] (* Harvey P. Dale, Feb 10 2019 *)
  • PARI
    a(n) = n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1 \\ Charles R Greathouse IV, Jan 17 2012
    
  • Sage
    [n^6+21*n^5+105*n^4+175*n^3+105*n^2+21*n+1 for n in (0..30)] # G. C. Greubel, Feb 16 2021
    

Formula

a(n) = N(7, n) = Sum_{k>0} A001263(7, k)*n^(k-1) = n^6 + 21*n^5 + 105*n^4 + 175*n^3 + 105*n^2 + 21*n + 1.
G.f.: (1 +422*x +1297*x^2 -908*x^3 -173*x^4 +86*x^5 -5*x^6)/(1-x)^7. - Philippe Deléham, Apr 03 2013; corrected by Georg Fischer, May 02 2019
E.g.f.: (1 +428*x +1711*x^2 +1420*x^3 +380*x^4 +36*x^5 +x^6)*exp(x). - G. C. Greubel, Feb 16 2021

Extensions

Corrected by T. D. Noe, Nov 09 2006

A090198 a(n) = N(5,n), where N(5,x) is the 5th Narayana polynomial.

Original entry on oeis.org

1, 42, 197, 562, 1257, 2426, 4237, 6882, 10577, 15562, 22101, 30482, 41017, 54042, 69917, 89026, 111777, 138602, 169957, 206322, 248201, 296122, 350637, 412322, 481777, 559626, 646517, 743122, 850137, 968282, 1098301, 1240962, 1397057
Offset: 0

Views

Author

Philippe Deléham, Jan 22 2004

Keywords

Crossrefs

Programs

Formula

a(n) = N(5, n) = Sum_{k>0} A001263(5, k)*n^(k-1) = n^4 +10*n^3 +20*n^2 +10*n +1.
G.f.: (1 +37*x -3*x^2 -13*x^3 +2*x^4)/(1-x)^5. - Philippe Deléham, Apr 03 2013
E.g.f.: (1 +41*x +57*x^2 +16*x^3 +x^4)*exp(x). - G. C. Greubel, Feb 16 2021

Extensions

Corrected by T. D. Noe, Nov 08 2006

A090199 a(n) = N(6,n), where N(6,x) is the 6th Narayana polynomial.

Original entry on oeis.org

1, 132, 903, 3304, 8925, 20076, 39907, 72528, 123129, 198100, 305151, 453432, 653653, 918204, 1261275, 1698976, 2249457, 2933028, 3772279, 4792200, 6020301, 7486732, 9224403, 11269104, 13659625, 16437876, 19649007, 23341528, 27567429
Offset: 0

Views

Author

Philippe Deléham, Jan 22 2004

Keywords

Crossrefs

Programs

  • Magma
    [(n+1)*(n^4 +14*n^3 +36*n^2 +14*n +1): n in [0..30]]; // G. C. Greubel, Feb 16 2021
  • Mathematica
    Table[(n+1)*(n^4 +14*n^3 +36*n^2 +14*n +1), {n,0,30}] (* G. C. Greubel, Feb 16 2021 *)
    LinearRecurrence[{6,-15,20,-15,6,-1},{1,132,903,3304,8925,20076},30] (* or *) CoefficientList[Series[(1+126 x+126 x^2-154 x^3+21 x^4)/(-1+x)^6,{x,0,30}],x] (* Harvey P. Dale, Jul 24 2021 *)
  • PARI
    a(n)=n^5+15*n^4+50*n^3+50*n^2+15*n+1 \\ Charles R Greathouse IV, Jan 17 2012
    
  • Sage
    [(n+1)*(n^4 +14*n^3 +36*n^2 +14*n +1) for n in (0..30)] # G. C. Greubel, Feb 16 2021
    

Formula

a(n) = N(6, n)= Sum_{k>0} A001263(6, k)*n^(k-1) = n^5 + 15*n^4 + 50*n^3 + 50*n^2 + 15*n + 1.
G.f.: (1 +126*x +126*x^2 -154*x^3 +21*x^4)/(1-x)^6. - Philippe Deléham, Apr 03 2013
E.g.f.: (1 +131*x +320*x^2 +165*x^3 +25*x^4 +x^5)*exp(x). - G. C. Greubel, Feb 16 2021

Extensions

Corrected generating function in Formula field. - Harvey P. Dale, Jul 24 2021

A204057 Triangle derived from an array of f(x), Narayana polynomials.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 14, 1, 1, 5, 19, 45, 42, 1, 1, 6, 29, 100, 197, 132, 1, 1, 7, 41, 185, 562, 903, 429, 1, 1, 8, 55, 306, 1257, 3304, 4279, 1430, 1, 1, 9, 71, 469, 2426, 8925, 20071, 20793, 4862, 1, 1, 10, 89, 680, 4237, 20076, 65445, 124996, 103049, 16796, 1
Offset: 1

Views

Author

Gary W. Adamson, Jan 09 2012

Keywords

Comments

Row sums = (1, 2, 4, 10, 31, 113, 466, 2129, 10641, 138628, 335379, 2702364,...)
Another version of triangle in A008550. - Philippe Deléham, Jan 13 2012
Another version of A243631. - Philippe Deléham, Sep 26 2014

Examples

			First few rows of the array =
  1,....1,....1,.....1,.....1,...; = A000012
  1.....2,....5,....14,....42,...; = A000108
  1,....3,...11,....45,...197,...; = A001003
  1,....4,...19,...100,...562,...; = A007564
  1,....5,...29,...185,..1257,...; = A059231
  1,....6,...41,...306,..2426,...; = A078009
  ...
First few rows of the triangle =
  1;
  1, 1;
  1, 2,  1;
  1, 3,  5,   1;
  1, 4, 11,  14,    1;
  1, 5, 19,  45,   42,    1;
  1, 6, 29, 100,  197,  132,     1;
  1, 7, 41, 185,  562,  903,   429,     1;
  1, 8, 55, 306, 1257, 3304,  4279,  1430,    1;
  1, 9, 71, 469, 2426, 8952, 20071, 20793, 4862, 1;
  ...
Examples: column 4 of the array = A090197: (1, 14, 45, 100,...) = N(4,n) where N(4,x) is the 4th Narayana polynomial.
Term (5,3) = 29 is the upper left term of M^3, where M = the infinite square production matrix:
  1, 4, 0, 0, 0,...
  1, 1, 4, 0, 0,...
  1, 1, 1, 4, 0,...
  1, 1, 1, 1, 4,...
... generating row 5, A059231: (1, 5, 29, 185,...).
		

Crossrefs

Programs

  • Magma
    A204057:= func< n, k | n eq 0 select 1 else (&+[ Binomial(n, j)^2*k^j*(n-j)/(n*(j+1)): j in [0..n-1]]) >;
    [A204057(k, n-k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 16 2021
  • Mathematica
    Table[Hypergeometric2F1[1-k, -k, 2, n-k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
  • Sage
    def A204057(n, k): return 1 if n==0 else sum( binomial(n, j)^2*k^j*(n-j)/(n*(j+1)) for j in [0..n-1])
    flatten([[A204057(k, n-k) for k in [1..n]] for n in [1..12]]) # G. C. Greubel, Feb 16 2021
    

Formula

The triangle is the set of antidiagonals of an array in which columns are f(x) of the Narayana polynomials; with column 1 = (1, 1, 1,...) column 2 = (1, 2, 3,..), column 3 = A028387, column 4 = A090197, then A090198, A090199,...
The array by rows is generated from production matrices of the form:
1, (N-1)
1, 1, (N-1)
1, 1, 1, (N-1)
1, 1, 1, 1, (N-1)
...(infinite square matrices with the rest zeros); such that if the matrix is M, n-th term in row N is the upper left term of M^n.
From G. C. Greubel, Feb 16 2021: (Start)
T(n, k) = Hypergeometric2F1([1-k, -k], [2], n-k).
Sum_{k=1..n} T(n, k) = A132745(n) - 1. (End)

Extensions

Corrected by Philippe Deléham, Jan 13 2012

A099169 a(n) = (1/n) * Sum_{k=0..n-1} C(n,k) * C(n,k+1) * (n-1)^k.

Original entry on oeis.org

1, 2, 11, 100, 1257, 20076, 387739, 8766248, 226739489, 6595646860, 212944033051, 7550600079672, 291527929539433, 12169325847587832, 545918747361417291, 26183626498897556176, 1336713063706757646465
Offset: 1

Views

Author

Ralf Stephan, Oct 09 2004

Keywords

Comments

A diagonal of Narayana array (A008550).

Crossrefs

Programs

  • Magma
    A099169:= func< n | (&+[Binomial(n, j)*Binomial(n-1,j)*(n-1)^j/(j+1): j in [0..n-1]]) >;
    [A099169(n): n in [1..30]]; // G. C. Greubel, Feb 16 2021
    
  • Maple
    A099169:= n-> add( binomial(n, j)*binomial(n-1,j)*(n-1)^j/(j+1), j=0..n-1);
    seq( A099169(n), n=1..30) # G. C. Greubel, Feb 16 2021
  • Mathematica
    Join[{1},Table[Sum[Binomial[n,k]Binomial[n,k+1](n-1)^k,{k,0,n-1}]/n,{n,2,20}]] (* Harvey P. Dale, Oct 07 2013 *)
    Table[Hypergeometric2F1[1-n,-n,2,-1+n],{n,1,20}] (* Vaclav Kotesovec, Apr 18 2014 *)
  • PARI
    a(n) = (1/n) * sum(k=0, n-1, binomial(n,k) * binomial(n,k+1) * (n-1)^k); \\ Michel Marcus, Feb 16 2021
  • Sage
    def A099169(n): return sum( binomial(n, j)*binomial(n-1,j)*(n-1)^j/(j+1) for j in [0..n-1])
    [A099169(n) for n in [1..30]] # G. C. Greubel, Feb 16 2021
    

Formula

From Vaclav Kotesovec, Apr 18 2014, extended Dec 01 2021: (Start)
a(n) = Hypergeometric2F1([1-n,-n], [2], -1+n).
a(n) ~ exp(2*sqrt(n)-2) * n^(n-7/4) / (2*sqrt(Pi)) * (1 + 119/(48*sqrt(n))). (End)

A242369 a(n) = P(n, 1, -2*n-1, 1-2*n)/(n+1), P the Jacobi polynomial.

Original entry on oeis.org

1, 1, 3, 19, 185, 2426, 39907, 788019, 18130401, 475697854, 14004694451, 456820603086, 16343563014649, 636020474595988, 26736885607750515, 1207031709414024451, 58225055056545820545, 2988064457570991780854, 162517551565531508113699, 9336340704734213892357498
Offset: 0

Views

Author

Peter Luschny, Jun 08 2014

Keywords

Crossrefs

Main diagonal of A008550, A243631.
Cf. A204057.

Programs

  • Magma
    A242369:= func< n | n eq 0 select 1 else (&+[Binomial(n, j)^2*(n-j)*n^(j-1)/(j+1): j in [0..n-1]]) >;
    [A242369(n): n in [0..30]]; // G. C. Greubel, Feb 16 2021
  • Maple
    a := n -> `if`(n=0,1, add(binomial(n,j)^2*(n-j)/(j+1)*n^(j-1), j=0..n-1)); seq(a(n), n=0..20);
  • Mathematica
    Table[JacobiP[n, 1, -2*n-1, 1-2*n]/(n+1), {n, 0, 20}]
  • Sage
    def A242369(n): return 1 if n==0 else sum( binomial(n, j)^2*(n-j)*n^(j-1)/(j+1) for j in [0..n-1])
    [A242369(n) for n in [0..20]] # G. C. Greubel, Feb 16 2021
    

Formula

a(n) = 2F1([1-n, -n], [2], n), 2F1 the hypergeometric function.
a(n) = Sum_{j=0..n-1} ( binomial(n,j)^2*(n-j)/(j+1)*n^(j-1) ), for n>0.
a(n) ~ (sqrt(n)+1)^(2*n+1)/(2*sqrt(Pi)*(n+1/2)^(9/4)). - Peter Luschny, Nov 17 2014
Showing 1-8 of 8 results.