cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A341014 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * j! * binomial(n,j)^2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 17, 34, 1, 1, 5, 31, 139, 209, 1, 1, 6, 49, 352, 1473, 1546, 1, 1, 7, 71, 709, 5233, 19091, 13327, 1, 1, 8, 97, 1246, 13505, 95836, 291793, 130922, 1, 1, 9, 127, 1999, 28881, 318181, 2080999, 5129307, 1441729, 1
Offset: 0

Views

Author

Seiichi Manyama, Feb 02 2021

Keywords

Examples

			Square array begins:
  1,    1,     1,     1,      1,      1, ...
  1,    2,     3,     4,      5,      6, ...
  1,    7,    17,    31,     49,     71, ...
  1,   34,   139,   352,    709,   1246, ...
  1,  209,  1473,  5233,  13505,  28881, ...
  1, 1546, 19091, 95836, 318181, 830126, ...
		

Crossrefs

Columns 0..4 give A000012, A002720, A025167, A102757, A102773.
Rows 0..2 give A000012, A000027(n+1), A056220(n+1).
Main diagonal gives A330260.
Cf. A307883.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[j == k == 0, 1, k^j]*j!*Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 02 2021 *)
  • PARI
    {T(n,k) = sum(j=0, n, k^j*j!*binomial(n, j)^2)}

Formula

E.g.f. of column k: exp(x/(1-k*x)) / (1-k*x).
T(n,k) = (2*k*n-k+1) * T(n-1,k) - k^2 * (n-1)^2 * T(n-2,k) for n > 1.

A330497 a(n) = n! * Sum_{k=0..n} (-1)^k * binomial(n,k) * n^(n - k) / k!.

Original entry on oeis.org

1, 0, 1, 26, 1089, 70124, 6495985, 821315214, 136115947009, 28651724077976, 7470040450004001, 2363470644596843330, 892244303052345224641, 396227360441775922668036, 204487588996059177697597969, 121370399839482643287189048374
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 18 2019

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n)*&+[(-1)^k*Binomial(n,k)*n^(n-k)/Factorial(k):k in [0..n]]:n in [0..15]]; // Marius A. Burtea, Dec 18 2019
  • Mathematica
    Join[{1}, Table[n! Sum[(-1)^k Binomial[n, k] n^(n - k)/k!, {k, 0, n}], {n, 1, 15}]]
    Join[{1}, Table[n^n n! LaguerreL[n, 1/n], {n, 1, 15}]]
    Table[n! SeriesCoefficient[Exp[-x/(1 - n x)]/(1 - n x), {x, 0, n}], {n, 0, 15}]

Formula

a(n) = n! * [x^n] exp(-x/(1 - n*x)) / (1 - n*x).
a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k)^2 * n^k * k!.
a(n) ~ sqrt(2*Pi) * BesselJ(0,2) * n^(2*n + 1/2) / exp(n). - Vaclav Kotesovec, Dec 18 2019

A341056 a(n) = n! * [x^n] exp(x/(1 - n*x)) / (1 - x).

Original entry on oeis.org

1, 2, 9, 106, 2801, 132426, 9705577, 1015001954, 143392421601, 26298332570386, 6074043257989001, 1724846814877790682, 590605908915568818769, 239956225437223244619866, 114123836188192016600789481, 62808518765936960824453590226, 39603421893790601518269204039617
Offset: 0

Views

Author

Seiichi Manyama, Feb 04 2021

Keywords

Examples

			a(3) = 3! * (1 + 1/1! + 7/2! + 73/3!) = 106.
		

Crossrefs

Programs

  • Mathematica
    Table[n!*(1 + Sum[Sum[n^(j-k)*Binomial[j-1, k-1]/k!, {k, 1, j}], {j, 1, n}]), {n, 0, 20}] (* Vaclav Kotesovec, Feb 14 2021 *)
  • PARI
    {a(n) = n!*(1+sum(j=1, n, sum(k=1, j, n^(j-k)*binomial(j-1, k-1)/k!)))}

Formula

a(n) = n! * Sum_{k=0..n} A341033(k,n)/k! = n! * (1 + Sum_{j=1.. n} Sum_{k=1.. j} n^(j-k) * binomial(j-1,k-1)/k!).
a(n) ~ BesselI(1,2) * n! * n^(n-1). - Vaclav Kotesovec, Feb 14 2021
Showing 1-3 of 3 results.