A187021
Coefficient of x^n in (1 + (n+1)*x + n*x^2)^n.
Original entry on oeis.org
1, 2, 13, 136, 1921, 33876, 712909, 17383584, 481003009, 14869654300, 507406003501, 18928740714192, 765897591633409, 33392080668673832, 1559976990077534253, 77717020110946293376, 4111810085670587224065, 230190619432401207833004, 13591965974806603671569101
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..381 (terms 0..100 from Vincenzo Librandi)
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - _N. J. A. Sloane_, Oct 08 2012
-
P:=PolynomialRing(Integers()); [ Coefficients((1+(n+1)*x+n*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
-
A187021:= n -> simplify( n^(n/2)*GegenbauerC(n, -n, -(n+1)/(2*sqrt(n))) );
1, seq(A187021(n), n = 1..30); # G. C. Greubel, May 31 2020
a := n -> hypergeom([-n, -n], [1], n):
seq(simplify(a(n)), n=0..18); # Peter Luschny, Dec 22 2020
-
Flatten[{1,Table[Sum[Binomial[n,k]^2*n^k,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)
Table[If[n==0, 1, Simplify[n^(n/2)*GegenbauerC[n, -n, -(n+1)/(2 Sqrt[n])]]], {n, 0, 30}] (* Emanuele Munarini, Oct 20 2016 *)
-
a(n):=coeff(expand((1+(n+1)*x+n*x^2)^n),x,n);
makelist(a(n),n,0,20);
-
{a(n)=sum(k=0,n,binomial(n,k)^2*n^k)} \\ Paul D. Hanna, Mar 29 2011
-
[1]+[ n^(n/2)*gegenbauer(n, -n, -(n+1)/(2*sqrt(n))) for n in (1..30)] # G. C. Greubel, May 31 2020
A243631
Square array of Narayana polynomials N_n evaluated at the integers, A(n,k) = N_n(k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 11, 14, 1, 1, 1, 5, 19, 45, 42, 1, 1, 1, 6, 29, 100, 197, 132, 1, 1, 1, 7, 41, 185, 562, 903, 429, 1, 1, 1, 8, 55, 306, 1257, 3304, 4279, 1430, 1, 1, 1, 9, 71, 469, 2426, 8925, 20071, 20793, 4862, 1
Offset: 0
[0] [1] [2] [3] [4] [5] [6] [7]
[0] 1, 1, 1, 1, 1, 1, 1, 1
[1] 1, 1, 1, 1, 1, 1, 1, 1
[2] 1, 2, 3, 4, 5, 6, 7, 8 .. A000027
[3] 1, 5, 11, 19, 29, 41, 55, 71 .. A028387
[4] 1, 14, 45, 100, 185, 306, 469, 680 .. A090197
[5] 1, 42, 197, 562, 1257, 2426, 4237, 6882 .. A090198
[6] 1, 132, 903, 3304, 8925, 20076, 39907, 72528 .. A090199
[7] 1, 429, 4279, 20071, 65445, 171481, 387739, 788019 .. A090200
A000108, A001003, A007564, A059231, A078009, A078018, A081178
First few rows of the antidiagonal triangle are:
1;
1, 1;
1, 1, 1;
1, 1, 2, 1;
1, 1, 3, 5, 1;
1, 1, 4, 11, 14, 1;
1, 1, 5, 19, 45, 42, 1; - _G. C. Greubel_, Feb 16 2021
-
A243631:= func< n,k | n eq 0 select 1 else (&+[ Binomial(n,j)^2*k^j*(n-j)/(n*(j+1)): j in [0..n-1]]) >;
[A243631(k,n-k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 16 2021
-
# Computed with Narayana polynomials:
N := (n,k) -> binomial(n,k)^2*(n-k)/(n*(k+1));
A := (n,x) -> `if`(n=0, 1, add(N(n,k)*x^k, k=0..n-1));
seq(print(seq(A(n,k), k=0..7)), n=0..7);
# Computed by recurrence:
Prec := proc(n,N,k) option remember; local A,B,C,h;
if n = 0 then 1 elif n = 1 then 1+N+(1-N)*(1-2*k)
else h := 2*N-n; A := n*h*(1+N-n); C := n*(h+2)*(N-n);
B := (1+h-n)*(n*(1-2*k)*(1+h)+2*k*N*(1+N));
(B*Prec(n-1,N,k) - C*Prec(n-2,N,k))/A fi end:
T := (n, k) -> Prec(n,n,k)/(n+1);
seq(print(seq(T(n,k), k=0..7)), n=0..7);
# Array by o.g.f. of columns:
gf := n -> 2/(sqrt((n-1)^2*x^2-2*(n+1)*x+1)+(n-1)*x+1):
for n from 0 to 11 do PolynomialTools:-CoefficientList(convert( series(gf(n), x, 12), polynom), x) od; # Peter Luschny, Nov 17 2014
# Row n by linear recurrence:
rec := n -> a(x) = add((-1)^(k+1)*binomial(n,k)*a(x-k), k=1..n):
ini := n -> seq(a(k) = A(n,k), k=0..n): # for A see above
row := n -> gfun:-rectoproc({rec(n),ini(n)},a(x),list):
for n from 1 to 7 do row(n)(8) od; # Peter Luschny, Nov 19 2014
-
MatrixForm[Table[JacobiP[n,1,-2*n-1,1-2*x]/(n+1), {n,0,7},{x,0,7}]]
Table[Hypergeometric2F1[1-k, -k, 2, n-k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 16 2021 *)
-
def NarayanaPolynomial():
R = PolynomialRing(ZZ, 'x')
D = [1]
h = 0
b = True
while True:
if b :
for k in range(h, 0, -1):
D[k] += x*D[k-1]
h += 1
yield R(expand(D[0]))
D.append(0)
else :
for k in range(0, h, 1):
D[k] += D[k+1]
b = not b
NP = NarayanaPolynomial()
for _ in range(8):
p = next(NP)
[p(k) for k in range(8)]
-
def A243631(n,k): return 1 if n==0 else sum( binomial(n,j)^2*k^j*(n-j)/(n*(j+1)) for j in [0..n-1])
flatten([[A243631(k,n-k) for k in [0..n]] for n in [0..12]]) # G. C. Greubel, Feb 16 2021
A307884
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 + 2*(k-1)*x + ((k+1)*x)^2).
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, -1, -2, 1, 1, -2, -3, 0, 1, 1, -3, -2, 11, 6, 1, 1, -4, 1, 28, 1, 0, 1, 1, -5, 6, 45, -74, -81, -20, 1, 1, -6, 13, 56, -255, -92, 141, 0, 1, 1, -7, 22, 55, -554, 477, 1324, 363, 70, 1, 1, -8, 33, 36, -959, 2376, 2689, -3656, -1791, 0, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
1, -2, -3, -2, 1, 6, 13, ...
1, 0, 11, 28, 45, 56, 55, ...
1, 6, 1, -74, -255, -554, -959, ...
1, 0, -81, -92, 477, 2376, 6475, ...
1, -20, 141, 1324, 2689, -804, -20195, ...
-
T[n_, k_] := Sum[If[k == j == 0, 1, (-k)^j] * Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)
A331511
Square array T(n,k), n >= 0, k >= 0, read by descending antidiagonals, where column k is the expansion of (1 - (k-3)*x)/(1 - 2*(k-1)*x + ((k-3)*x)^2)^(3/2).
Original entry on oeis.org
1, 1, 0, 1, 2, -15, 1, 4, -6, 32, 1, 6, 9, -12, 105, 1, 8, 30, 16, 30, -576, 1, 10, 57, 140, 25, 60, 105, 1, 12, 90, 384, 630, 36, -140, 5760, 1, 14, 129, 772, 2505, 2772, 49, -280, -13167, 1, 16, 174, 1328, 6430, 16008, 12012, 64, 630, -30400
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, ...
-15, -6, 9, 30, 57, 90, ...
32, -12, 16, 140, 384, 772, ...
105, 30, 25, 630, 2505, 6430, ...
-576, 60, 36, 2772, 16008, 52524, ...
.
From _Peter Luschny_, Jan 20 2020: (Start)
Read by ascending antidiagonals gives:
[0] 1
[1] 0, 1
[2] -15, 2, 1
[3] 32, -6, 4, 1
[4] 105, -12, 9, 6, 1
[5] -576, 30, 16, 30, 8, 1
[6] 105, 60, 25, 140, 57, 10, 1
[7] 5760, -140, 36, 630, 384, 90, 12, 1
[8] -13167, -280, 49, 2772, 2505, 772, 129, 14, 1
[9] -30400, 630, 64, 12012, 16008, 6430, 1328, 174, 16, 1 (End)
-
T := (n, k) -> (n + 1)^2*hypergeom([-n, -n], [2], k - 2):
seq(lprint(seq(simplify(T(n,k)), k=0..7)), n=0..6) # Peter Luschny, Jan 20 2020
-
T[n_, k_] := (n + 1)^2 * HypergeometricPFQ[{-n, -n}, {2}, k - 2]; Table[Table[T[n, k - n], {n, 0, k}], {k, 0, 9}] //Flatten (* Amiram Eldar, Jan 20 2020 *)
A335333
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*(2*k+1)*x + x^2).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 37, 63, 1, 1, 9, 73, 305, 321, 1, 1, 11, 121, 847, 2641, 1683, 1, 1, 13, 181, 1809, 10321, 23525, 8989, 1, 1, 15, 253, 3311, 28401, 129367, 213445, 48639, 1, 1, 17, 337, 5473, 63601, 458649, 1651609, 1961825, 265729, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 13, 37, 73, 121, 181, ...
1, 63, 305, 847, 1809, 3311, ...
1, 321, 2641, 10321, 28401, 63601, ...
1, 1683, 23525, 129367, 458649, 1256651, ...
-
T[n_, k_] := LegendreP[n, 2*k + 1]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
-
T(n, k) = pollegendre(n, 2*k+1);
A333988
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of (1-(k+1)*x) / (1-2*(k+1)*x+((k-1)*x)^2).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 4, 17, 32, 1, 1, 5, 28, 99, 128, 1, 1, 6, 41, 208, 577, 512, 1, 1, 7, 56, 365, 1552, 3363, 2048, 1, 1, 8, 73, 576, 3281, 11584, 19601, 8192, 1, 1, 9, 92, 847, 6016, 29525, 86464, 114243, 32768, 1, 1, 10, 113, 1184, 10033, 62976, 265721, 645376, 665857, 131072, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 8, 17, 28, 41, 56, ...
1, 32, 99, 208, 365, 576, ...
1, 128, 577, 1552, 3281, 6016, ...
1, 512, 3363, 11584, 29525, 62976, ...
-
T[n_, 0] := 1; T[n_, k_] := Sum[k^j * Binomial[2*n, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Sep 04 2020 *)
-
{T(n, k) = sum(j=0, n, k^j*binomial(2*n, 2*j))}
A331514
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/(1 - 2*k*x + ((k-2)*x)^2)^(3/2).
Original entry on oeis.org
1, 1, 0, 1, 3, -6, 1, 6, 6, 0, 1, 9, 30, 10, 30, 1, 12, 66, 140, 15, 0, 1, 15, 114, 450, 630, 21, -140, 1, 18, 174, 1000, 2955, 2772, 28, 0, 1, 21, 246, 1850, 8430, 18963, 12012, 36, 630, 1, 24, 330, 3060, 18855, 69384, 119812, 51480, 45, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 3, 6, 9, 12, 15, ...
-6, 6, 30, 66, 114, 174, ...
0, 10, 140, 450, 1000, 1850, ...
30, 15, 630, 2955, 8430, 18855, ...
0, 21, 2772, 18963, 69384, 187425, ...
-
T[n_, k_] = 1/2 * Sum[If[k == 2 && n == j - 1, 1, (k - 2)^(n + 1 - j)] * j * Binomial[n + 1, j] * Binomial[n + 1 + j, j], {j, 1, n + 1}]; Table[Table[T[n, k - n], {n, 0, k}], {k, 0, 9}] //Flatten (* Amiram Eldar, Jan 20 2020 *)
-
T(n,k) = (1/2)*sum(j=1,n+1,(k-2)^(n+1-j)*j*binomial(n+1,j)*binomial(n+1+j,j));
matrix(7, 7, n, k, T(n-1, k-1)) \\ Michel Marcus, Jan 20 2020
A331791
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 2/(1 - 2*k*x + ((k-2)*x)^2 + (1 - k*x) * sqrt(1 - 2*k*x + ((k-2)*x)^2)).
Original entry on oeis.org
1, 1, 0, 1, 2, -3, 1, 4, 3, 0, 1, 6, 15, 4, 10, 1, 8, 33, 56, 5, 0, 1, 10, 57, 180, 210, 6, -35, 1, 12, 87, 400, 985, 792, 7, 0, 1, 14, 123, 740, 2810, 5418, 3003, 8, 126, 1, 16, 165, 1224, 6285, 19824, 29953, 11440, 9, 0, 1, 18, 213, 1876, 12130, 53550, 140497, 166344, 43758, 10, -462
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, ...
-3, 3, 15, 33, 57, 87, ...
0, 4, 56, 180, 400, 740, ...
10, 5, 210, 985, 2810, 6285, ...
0, 6, 792, 5418, 19824, 53550, ...
-
T[n_, k_] := Sum[If[k==1 && j==0, 1, (k-1)^j] * Binomial[n + 1, j] * Binomial[n + 1, j + 1], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 05 2021 *)
A341014
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) = Sum_{j=0..n} k^j * j! * binomial(n,j)^2.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 7, 1, 1, 4, 17, 34, 1, 1, 5, 31, 139, 209, 1, 1, 6, 49, 352, 1473, 1546, 1, 1, 7, 71, 709, 5233, 19091, 13327, 1, 1, 8, 97, 1246, 13505, 95836, 291793, 130922, 1, 1, 9, 127, 1999, 28881, 318181, 2080999, 5129307, 1441729, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 7, 17, 31, 49, 71, ...
1, 34, 139, 352, 709, 1246, ...
1, 209, 1473, 5233, 13505, 28881, ...
1, 1546, 19091, 95836, 318181, 830126, ...
-
T[n_, k_] := Sum[If[j == k == 0, 1, k^j]*j!*Binomial[n, j]^2, {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 02 2021 *)
-
{T(n,k) = sum(j=0, n, k^j*j!*binomial(n, j)^2)}
A307910
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 7, 0, 1, 4, 15, 32, 19, 0, 1, 5, 24, 81, 136, 51, 0, 1, 6, 35, 160, 459, 592, 141, 0, 1, 7, 48, 275, 1120, 2673, 2624, 393, 0, 1, 8, 63, 432, 2275, 8064, 15849, 11776, 1107, 0, 1, 9, 80, 637, 4104, 19375, 59136, 95175, 53344, 3139, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 8, 15, 24, 35, 48, ...
0, 7, 32, 81, 160, 275, 432, ...
0, 19, 136, 459, 1120, 2275, 4104, ...
0, 51, 592, 2673, 8064, 19375, 40176, ...
0, 141, 2624, 15849, 59136, 168125, 400896, ...
0, 393, 11776, 95175, 439296, 1478125, 4053888, ...
-
A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, ] = 1; A[, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)
Showing 1-10 of 13 results.
Comments