A099141
a(n) = 5^n * T(n,7/5) where T is the Chebyshev polynomial of the first kind.
Original entry on oeis.org
1, 7, 73, 847, 10033, 119287, 1419193, 16886527, 200931553, 2390878567, 28449011113, 338514191407, 4027973401873, 47928772841047, 570303484727833, 6786029465163487, 80746825394092993, 960804818888214727
Offset: 0
A099142
a(n) = 6^n * T(n, 4/3) where T is the Chebyshev polynomial of the first kind.
Original entry on oeis.org
1, 8, 92, 1184, 15632, 207488, 2757056, 36643328, 487039232, 6473467904, 86042074112, 1143628341248, 15200538791936, 202038000386048, 2685388609667072, 35692849740775424, 474411605904392192
Offset: 0
-
LinearRecurrence[{16,-36},{1,8},20] (* Harvey P. Dale, Mar 09 2018 *)
-
a(n) = 6^n*polchebyshev(n, 1, 4/3); \\ Michel Marcus, Sep 08 2019
A165224
a(0)=1, a(1)=9, a(n) = 18*a(n-1) - 49*a(n-2) for n > 1.
Original entry on oeis.org
1, 9, 113, 1593, 23137, 338409, 4957649, 72655641, 1064876737, 15607654857, 228758827313, 3352883803641, 49142725927201, 720277760311209, 10557006115168913, 154732499817791193, 2267891697076964737
Offset: 0
A333990
a(n) = Sum_{k=0..n} n^k * binomial(2*n,2*k).
Original entry on oeis.org
1, 2, 17, 208, 3281, 62976, 1419193, 36643328, 1064876737, 34359869440, 1217844546401, 47005113741312, 1961498610274321, 87961440484327424, 4217109422614386761, 215187913985734475776, 11641533109203575871233, 665430291591787349803008, 40065760383961956327231409
Offset: 0
-
a[0] = 1; a[n_] := Sum[n^k * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Sep 04 2020 *)
Table[Hypergeometric2F1[1/2 - n, -n, 1/2, n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 05 2020 *)
-
{a(n) = sum(k=0, n, n^k*binomial(2*n, 2*k))}
A333989
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of (1+(k-1)*x) / (1+2*(k-1)*x+((k+1)*x)^2).
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, -1, -4, 1, 1, -2, -7, 0, 1, 1, -3, -8, 23, 16, 1, 1, -4, -7, 64, 17, 0, 1, 1, -5, -4, 117, -128, -241, -64, 1, 1, -6, 1, 176, -527, -512, 329, 0, 1, 1, -7, 8, 235, -1264, 237, 4096, 1511, 256, 1, 1, -8, 17, 288, -2399, 3776, 11753, -8192, -5983, 0, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, ...
1, -4, -7, -8, -7, -4, ...
1, 0, 23, 64, 117, 176, ...
1, 16, 17, -128, -527, -1264, ...
1, 0, -241, -512, 237, 3776, ...
-
T[n_, 0] := 1; T[n_, k_] := Sum[(-k)^j * Binomial[2*n, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Sep 04 2020 *)
-
{T(n, k) = sum(j=0, n, (-k)^j*binomial(2*n, 2*j))}
Showing 1-5 of 5 results.
Comments