cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A333988 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of (1-(k+1)*x) / (1-2*(k+1)*x+((k-1)*x)^2).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 4, 17, 32, 1, 1, 5, 28, 99, 128, 1, 1, 6, 41, 208, 577, 512, 1, 1, 7, 56, 365, 1552, 3363, 2048, 1, 1, 8, 73, 576, 3281, 11584, 19601, 8192, 1, 1, 9, 92, 847, 6016, 29525, 86464, 114243, 32768, 1, 1, 10, 113, 1184, 10033, 62976, 265721, 645376, 665857, 131072, 1
Offset: 0

Views

Author

Seiichi Manyama, Sep 04 2020

Keywords

Examples

			Square array begins:
  1,   1,    1,     1,     1,     1, ...
  1,   2,    3,     4,     5,     6, ...
  1,   8,   17,    28,    41,    56, ...
  1,  32,   99,   208,   365,   576, ...
  1, 128,  577,  1552,  3281,  6016, ...
  1, 512, 3363, 11584, 29525, 62976, ...
		

Crossrefs

Main diagonal gives A333990.

Programs

  • Mathematica
    T[n_, 0] := 1; T[n_, k_] := Sum[k^j * Binomial[2*n, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Sep 04 2020 *)
  • PARI
    {T(n, k) = sum(j=0, n, k^j*binomial(2*n, 2*j))}

Formula

T(n,k) = Sum_{j=0..n} k^j * binomial(2*n,2*j).
T(0,k) = 1, T(1,k) = k+1 and T(n,k) = 2 * (k+1) * T(n-1,k) - (k-1)^2 * T(n-2,k) for n>1.

A333991 a(n) = Sum_{k=0..n} (-n)^k * binomial(2*n,2*k).

Original entry on oeis.org

1, 0, -7, 64, -527, 3776, -7199, -712704, 28545857, -881543168, 25615822601, -733594255360, 20859188600881, -580152163418112, 15048530008948913, -311489672222081024, 713562283940993281, 511135051171610230784, -48010258775057340355559, 3439412411849176925601792
Offset: 0

Views

Author

Seiichi Manyama, Sep 04 2020

Keywords

Crossrefs

Main diagonal of A333989.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(-n)^k * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Sep 04 2020 *)
    Table[Hypergeometric2F1[1/2 - n, -n, 1/2, -n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 05 2020 *)
    Table[Cos[2*n*ArcTan[Sqrt[n]]] * (n + 1)^n, {n, 0, 20}] // Round (* Vaclav Kotesovec, Sep 05 2020 *)
  • PARI
    {a(n) = sum(k=0, n, (-n)^k*binomial(2*n, 2*k))}

Formula

From Vaclav Kotesovec, Sep 05 2020: (Start)
a(n) = hypergeometric2F1(1/2 - n, -n, 1/2, -n).
a(n) = (1 + i*sqrt(n))^(2*n)/2 + (1 - i*sqrt(n))^(2*n)/2, where i is the imaginary unit.
a(n) = cos(2*n*arctan(sqrt(n))) * (n + 1)^n. (End)
Showing 1-2 of 2 results.