A006442 Expansion of 1/sqrt(1 - 10*x + x^2).
1, 5, 37, 305, 2641, 23525, 213445, 1961825, 18205345, 170195525, 1600472677, 15122515985, 143457011569, 1365435096485, 13033485491077, 124715953657025, 1195966908404545, 11490534389896325, 110584004488276645, 1065853221648055025
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
- T. R. S. Walsh, Number of sensed planar maps with n edges and m vertices
Crossrefs
Programs
-
Magma
[Evaluate(LegendrePolynomial(n), 5): n in [0..40]]; // G. C. Greubel, May 21 2023
-
Maple
seq(orthopoly[P](n,5), n = 0 .. 20); # Robert Israel, Aug 18 2014
-
Mathematica
Table[LegendreP[n, 5], {n, 0, 19}] (* Arkadiusz Wesolowski, Aug 13 2012 *) CoefficientList[Series[1 / Sqrt[1 - 10 x + x^2], {x, 0, 20}], x] (* Vincenzo Librandi, Nov 23 2014 *)
-
PARI
a(n)=subst(pollegendre(n),x,5)
-
PARI
/* as lattice paths: same as in A092566 but use */ steps=[[1,0], [1,0], [0,1], [1,1]]; /* note the double [1,0] */ /* Joerg Arndt, Jul 01 2011 */
-
PARI
{a(n)=sum(k=0,n,binomial(n,k)^2*2^k*3^(n-k))} /* Paul D. Hanna */
-
PARI
{a(n) = sum(k=0, n, 2^k * binomial(2*k, k) * binomial(n+k, n-k) )} for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 17 2014
-
SageMath
[gen_legendre_P(n,0,5) for n in range(41)] # G. C. Greubel, May 21 2023
Formula
Legendre polynomial evaluated at 5. - Michael Somos, Dec 04 2001
G.f.: 1/sqrt(1 - 10*x + x^2).
a(n) equals the central coefficient of (1 + 5*x + 6*x^2)^n. - Paul D. Hanna, Jun 03 2003
a(n) equals the (n+1)-th term of the binomial transform of 1/(1-2x)^(n+1). - Paul D. Hanna, Sep 29 2003
a(n) = Sum_{k=0..n} 2^k*binomial(n, k)*binomial(n+k, k). - Benoit Cloitre, Apr 13 2004
a(n) = Sum_{k=0..n} binomial(n,k)^2 * 2^k * 3^(n-k). - Paul D. Hanna, Feb 04 2012
E.g.f.: exp(5*x) * Bessel_I(0, 2*sqrt(6)*x). - Paul Barry, May 25 2005
D-finite with recurrence: n*a(n) - 5*(2n-1)*a(n-1) + (n-1)*a(n-2) = 0 [Eq (4) in the T. D. Noe article]. R. J. Mathar, Jun 26 2012
a(n) ~ (5 + 2*sqrt(6))^n/(2*sqrt(Pi*n)*sqrt(5*sqrt(6) - 12)). - Vaclav Kotesovec, Oct 05 2012
a(n) = hypergeom([-n, n+1], [1], -2). - Peter Luschny, May 23 2014
a(n) = Sum_{k=0..n} 2^k * C(2*k, k) * C(n+k, n-k). - Paul D. Hanna, Aug 17 2014
a(n) = Sum_{k=0..n} (k+1) * 3^k * (-1)^(n-k) * binomial(n,k) * binomial(n+k+1,n) / (n+k+1). - Vladimir Kruchinin, Nov 23 2014
From Peter Bala, Nov 28 2021: (Start)
a(n) = (1/3)*(1/2)^n*Sum_{k >= n} binomial(k,n)^2*(2/3)^k.
a(n) = (1/3)^(n+1)*hypergeom([n+1, n+1], [1], 2/3).
a(n) = (2^n)*hypergeom([-n, -n], [1], 3/2).
a(n) = [x^n] ((x - 1)*(3 - 2*x))^n
a(n) = (1/2)^n*A098270(n). (End)
a(n) = (-1)^n * Sum_{k=0..n} (1/10)^(n-2*k) * binomial(-1/2,k) * binomial(k,n-k). - Seiichi Manyama, Aug 28 2025
a(n) = Sum_{k=0..floor(n/2)} 6^k * 5^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, Aug 30 2025
Comments