cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A335333 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*(2*k+1)*x + x^2).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 37, 63, 1, 1, 9, 73, 305, 321, 1, 1, 11, 121, 847, 2641, 1683, 1, 1, 13, 181, 1809, 10321, 23525, 8989, 1, 1, 15, 253, 3311, 28401, 129367, 213445, 48639, 1, 1, 17, 337, 5473, 63601, 458649, 1651609, 1961825, 265729, 1
Offset: 0

Views

Author

Seiichi Manyama, Jun 02 2020

Keywords

Examples

			Square array begins:
  1,    1,     1,      1,      1,       1, ...
  1,    3,     5,      7,      9,      11, ...
  1,   13,    37,     73,    121,     181, ...
  1,   63,   305,    847,   1809,    3311, ...
  1,  321,  2641,  10321,  28401,   63601, ...
  1, 1683, 23525, 129367, 458649, 1256651, ...
		

Crossrefs

Columns k=0..4 give A000012, A001850, A006442, A084768, A084769.
Rows n=0..6 give A000012, A005408, A003154(n+1), A160674, A144124, A335338, A144126.
Main diagonal gives A331656.
T(n,n-1) gives A331657.

Programs

  • Mathematica
    T[n_, k_] := LegendreP[n, 2*k + 1]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
  • PARI
    T(n, k) = pollegendre(n, 2*k+1);

Formula

T(n,k) is the coefficient of x^n in the expansion of (1 + (2*k+1)*x + k*(k+1)*x^2)^n.
T(n,k) = Sum_{j=0..n} k^j * (k+1)^(n-j) * binomial(n,j)^2.
T(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * binomial(n+j,j).
n * T(n,k) = (2*k+1) * (2*n-1) * T(n-1,k) - (n-1) * T(n-2,k).
T(n,k) = P_n(2*k+1), where P_n is n-th Legendre polynomial.
From Seiichi Manyama, Aug 30 2025: (Start)
T(n,k) = (-1)^n * Sum_{j=0..n} (1/(2*(2*k+1)))^(n-2*j) * binomial(-1/2,j) * binomial(j,n-j).
T(n,k) = Sum_{j=0..floor(n/2)} (k*(k+1))^j * (2*k+1)^(n-2*j) * binomial(n,2*j) * binomial(2*j,j).
E.g.f. of column k: exp((2*k+1)*x) * BesselI(0, 2*sqrt(k*(k+1))*x). (End)

A331656 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * n^k.

Original entry on oeis.org

1, 3, 37, 847, 28401, 1256651, 69125869, 4548342975, 348434664769, 30463322582899, 2993348092318101, 326572612514776079, 39170287549040392369, 5123157953193993402171, 725662909285939100555101, 110662236267661479984580351, 18077209893508013563092846849
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 23 2020

Keywords

Crossrefs

Main diagonal of A335333.

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]
    Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n + 1) x + x^2], {x, 0, n}], {n, 0, 16}]
    Table[LegendreP[n, 2 n + 1], {n, 0, 16}]
    Table[Hypergeometric2F1[-n, n + 1, 1, -n], {n, 0, 16}]
  • PARI
    a(n) = {sum(k=0, n, binomial(n,k) * binomial(n+k,k) * n^k)} \\ Andrew Howroyd, Jan 23 2020

Formula

a(n) = central coefficient of (1 + (2*n + 1)*x + n*(n + 1)*x^2)^n.
a(n) = [x^n] 1 / sqrt(1 - 2*(2*n + 1)*x + x^2).
a(n) = n! * [x^n] exp((2*n + 1)*x) * BesselI(0,2*sqrt(n*(n + 1))*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k * (n + 1)^(n - k).
a(n) = P_n(2*n+1), where P_n is n-th Legendre polynomial.
a(n) ~ exp(1/2) * 4^n * n^(n - 1/2) / sqrt(Pi). - Vaclav Kotesovec, Jan 28 2020
From Seiichi Manyama, Aug 30 2025: (Start)
a(n) = (-1)^n * Sum_{k=0..n} (1/(2*(2*n+1)))^(n-2*k) * binomial(-1/2,k) * binomial(k,n-k).
a(n) = Sum_{k=0..floor(n/2)} (n*(n+1))^k * (2*n+1)^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). (End)

A335310 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * (-n)^(n-k).

Original entry on oeis.org

1, 1, -2, 11, -74, 477, -804, -84425, 3315334, -102211207, 3005297956, -88338323709, 2627003399164, -78764141488043, 2341929797646648, -66394419743289105, 1609460569459689286, -18001777147777896975, -1625299659961386724524, 196005371138608184827003
Offset: 0

Views

Author

Ilya Gutkovskiy, May 31 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] (-n)^(n - k), {k, 0, n}], {n, 1, 19}]]
    Table[SeriesCoefficient[1/Sqrt[1 + 2 (n - 2) x + n^2 x^2], {x, 0, n}], {n, 0, 19}]
    Table[n! SeriesCoefficient[Exp[(2 - n) x] BesselI[0, 2 Sqrt[1 - n] x], {x, 0, n}], {n, 0, 19}]
    Table[Hypergeometric2F1[-n, -n, 1, 1 - n], {n, 0, 19}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)^2*(1-n)^k); \\ Michel Marcus, Jun 01 2020

Formula

a(n) = central coefficient of (1 - (n - 2)*x - (n - 1)*x^2)^n.
a(n) = [x^n] 1 / sqrt(1 + 2*(n - 2)*x + n^2*x^2).
a(n) = n! * [x^n] exp((2 - n)*x) * BesselI(0,2*sqrt(1 - n)*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * (1-n)^k.

A383133 a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(n*k,k) * n^k.

Original entry on oeis.org

1, 0, 17, 1889, 412225, 151448249, 84430503361, 66535567456546, 70456680210155009, 96530372235620300465, 166169585125820280654001, 351113456811120647774884511, 893491183170443755035588745153, 2695374684029443253628238600963667, 9511442599320236554084097413617603681
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[n k, k] n^k, {k, 0, n}], {n, 0, 14}]

Formula

a(n) = [x^n] ((1 + n*x)^n - x)^n.
a(n) ~ exp(n - 1/2) * n^(2*n - 1/2) / sqrt(2*Pi). - Vaclav Kotesovec, Apr 19 2025
Showing 1-4 of 4 results.