cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A243943 a(n) = A006442(n)^2.

Original entry on oeis.org

1, 25, 1369, 93025, 6974881, 553425625, 45558768025, 3848757330625, 331434586569025, 28966516730025625, 2561512789823546329, 228690489716580520225, 20579914168308199841761, 1864413002713001259355225, 169871744046114667846619929, 15554069096581207471331850625
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2014

Keywords

Comments

In general, we have the binomial identity:
if b(n) = Sum_{k=0..n} t^k * C(2*k, k) * C(n+k, n-k),
then b(n)^2 = Sum_{k=0..n} (t^2+t)^k * C(2*k, k)^2 * C(n+k, n-k),
where the g.f. of b(n) is 1/sqrt(1 - (4*t+2)*x + x^2),
and the g.f. of b(n)^2 is 1 / AGM(1-x, sqrt((1+x)^2 - (4*t+2)^2*x)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
Note that the g.f. of A006442 is 1/sqrt(1 - 10*x + x^2).
Limit_{n -> oo} a(n+1)/a(n) = (5 + 2*sqrt(6))^2 = 49 + 20*sqrt(6).

Examples

			G.f.: A(x) = 1 + 9*x + 169*x^2 + 3969*x^3 + 103041*x^4 + 2832489*x^5 +...
		

Crossrefs

Sequences of the form LegendreP(n, 2*m+1)^2: A000012 (m=0), A243949 (m=1), this sequence (m=2), A243944 (m=3), A243007 (m=4).
Cf. A006442.

Programs

  • Magma
    [Evaluate(LegendrePolynomial(n), 5)^2 : n in [0..40]]; // G. C. Greubel, May 17 2023
    
  • Mathematica
    Table[Sum[6^k * Binomial[2*k, k]^2 * Binomial[n+k, n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 28 2019 *)
    LegendreP[Range[0,40], 5]^2 (* G. C. Greubel, May 17 2023 *)
  • PARI
    {a(n) = sum(k=0, n, 6^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 2^k * binomial(2*k, k) * binomial(n+k, n-k) )^2}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Using AGM: */
    {a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 10^2*x +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 30 2014
    
  • SageMath
    [gen_legendre_P(n,0,5)^2 for n in range(41)] # G. C. Greubel, May 17 2023

Formula

G.f.: 1 / AGM(1-x, sqrt(1-98*x+x^2)). - Paul D. Hanna, Aug 30 2014
a(n) = Sum_{k=0..n} 6^k * C(2*k, k)^2 * C(n+k, n-k).
a(n)^(1/2) = Sum_{k=0..n} 2^k * C(2*k, k) * C(n+k, n-k).
a(n) ~ (5+2*sqrt(6))^(2*n+1) / (4*Pi*sqrt(6)*n). - Vaclav Kotesovec, Sep 28 2019

A330204 Composite numbers k such that P(k, 5) == 5 (mod k), where P(k, 5) = A006442(k) is the k-th Legendre polynomial evaluated at 5.

Original entry on oeis.org

4, 15, 35, 165, 255, 615, 1815, 1876, 2636, 2948, 5380, 5565, 11235, 28545, 288380, 903644, 1807995, 2486165, 2674060, 10538572, 11791595, 14145121, 28558415, 45153277, 45682751
Offset: 1

Views

Author

Amiram Eldar, Dec 05 2019

Keywords

Comments

P(p, 5) == 5 (mod p) for all primes p. This is a special case of Schur congruences (see A330203 for references). This sequence consists of the composite numbers for which the congruence holds.

Examples

			4 is in the sequence since it is composite and P(4, 5) = 2641 == 5 (mod 4).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000], CompositeQ[#] && Divisible[LegendreP[#, 5] - 5, #] &]
  • PARI
    isok(k) = Mod(subst(pollegendre(k), x, 5), k) == 5;
    forcomposite (k=1, 10000, if (isok(k), print1(k, ", "))); \\ Michel Marcus, Dec 06 2019
    
  • Sage
    a, b = 1, 5
    for n in range(2, 10000):
        a, b = b, ((10*n-5)*b - (n-1)*a)//n
        if (b%n == 5%n) and (not Integer(n).is_prime()): print(n)  # Robin Visser, Aug 17 2023

Extensions

a(22)-a(23) from Robin Visser, Aug 17 2023
a(24)-a(25) from Robin Visser, Sep 11 2023

A084768 a(n) = P_n(7), where P_n is n-th Legendre polynomial; also, a(n) = central coefficient of (1 + 7*x + 12*x^2)^n.

Original entry on oeis.org

1, 7, 73, 847, 10321, 129367, 1651609, 21360031, 278905249, 3668760487, 48543499753, 645382441711, 8614382884849, 115367108888311, 1549456900170553, 20861640747345727, 281483386791966529, 3805228005705102151, 51527535767904810889, 698796718936034430607
Offset: 0

Views

Author

Paul D. Hanna, Jun 03 2003

Keywords

Comments

More generally, given fixed parameters b and c, we have the identities:
(1) a(n) = Sum_{k=0..n} binomial(n,k)^2 * b^k * c^(n-k);
(2) a(n) = [x^n] (1 + (b+c)*x + b*c*x^2)^n;
(3) g.f.: 1/sqrt(1 - 2*(b+c)*x + (b-c)^2*x^2);
(4) Sum_{n>=1} a(n)*x^n/n = log(G(x)) where G(x) = 1 + (b+c)*x*G(x) + b*c*x^2*G(x)^2.
Number of directed 2-D walks of length 2n starting at (0,0) and ending on the X-axis using steps NE, SE, NE, SW and avoiding NE followed by SE. - David Scambler, Jun 24 2013

Crossrefs

Column k=3 of A335333.
Sequences of the form LegendreP(n, 2*m+1): A000012 (m=0), A001850 (m=1), A006442 (m=2), this sequence (m=3), A084769 (m=4).
Cf. A084774, A243944 (a(n)^2).

Programs

  • Magma
    [Evaluate(LegendrePolynomial(n),7): n in [0..40]]; // G. C. Greubel, May 17 2023
    
  • Mathematica
    Table[LegendreP[n, 7], {n, 0, 20}] (* Vaclav Kotesovec, Jul 31 2013 *)
  • PARI
    for(n=0,30,print1(subst(pollegendre(n),x,7)","))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)^2*3^k*4^(n-k))} \\ Paul D. Hanna, Sep 28 2012
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From a(n)^2 = A243944(n) (Paul D. Hanna, Aug 18 2014): */
    {a(n) = sqrtint( sum(k=0, n, 12^k * binomial(2*k, k)^2 * binomial(n+k, n-k) ) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • SageMath
    [gen_legendre_P(n,0,7) for n in range(41)] # G. C. Greubel, May 17 2023

Formula

G.f.: 1/sqrt(1 - 14*x + x^2).
Also a(n) = (n+1)-th term of the binomial transform of 1/(1-3x)^(n+1).
a(n) = Sum_{k=0..n} 3^k*C(n,k)*C(n+k,k). - Benoit Cloitre, Apr 13 2004
E.g.f.: exp(7*x) * Bessel_I(0, 2*sqrt(12)*x). - Paul Barry, May 25 2005
D-finite with recurrence: n*a(n) + 7*(1-2*n)*a(n-1) + (n-1)*a(n-2) = 0. - R. J. Mathar, Sep 27 2012
a(n) = Sum_{k=0..n} C(n,k)^2 * 3^k * 4^(n-k). - Paul D. Hanna, Sep 28 2012
a(n) ~ (7+4*sqrt(3))^(n+1/2)/(2*3^(1/4)*sqrt(2*Pi*n)). - Vaclav Kotesovec, Jul 31 2013
a(n) = hypergeom([-n, n+1], [1], -3). - Peter Luschny, May 23 2014
a(n)^2 = Sum_{k=0..n} 12^k * C(2*k, k)^2 * C(n+k, n-k) = A243944(n). - Paul D. Hanna, Aug 18 2014
From Peter Bala, Apr 17 2024: (Start)
a(n) = (1/4)*(1/3)^n*Sum_{k >= n} binomial(k, n)^2*(3/4)^k.
a(n) = (1/4)^(n+1)*hypergeom([n+1, n+1], [1], 3/4).
a(n) = [x^n] ((1 + x)*(4 + 3*x))^n = [x^n] ((1 + 3*x)*(1 + 4*x))^n.
a(n) = (3^n)*hypergeom([-n, -n], [1], 4/3) = (4^n)*hypergeom([-n, -n], [1], 3/4).
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
a(n) = (-1)^n * Sum_{k = 0..n} (-4)^k*binomial(2*k, k)*binomial(n+k, n-k).
G.f: Sum_{n >= 0} (3^n)*binomial(2*n, n)*x^n/(1 - x)^(2*n+1) = 1 + 7*x + 73*x^2 + 847^x^3 + .... (End)
a(n) = (-1)^n * Sum_{k=0..n} (1/14)^(n-2*k) * binomial(-1/2,k) * binomial(k,n-k). - Seiichi Manyama, Aug 28 2025
a(n) = Sum_{k=0..floor(n/2)} 12^k * 7^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, Aug 30 2025

A084769 a(n) = P_n(9), where P_n is n-th Legendre polynomial; also, a(n) = central coefficient of (1 + 9*x + 20*x^2)^n.

Original entry on oeis.org

1, 9, 121, 1809, 28401, 458649, 7544041, 125700129, 2114588641, 35836273449, 610897146201, 10463745263409, 179939616743121, 3104680678772409, 53721299280288201, 931852905510160449, 16198821321758152641
Offset: 0

Views

Author

Paul D. Hanna, Jun 03 2003

Keywords

Crossrefs

Column k=4 of A335333.
Sequences of the form LegendreP(n, 2*m+1): A000012 (m=0), A001850 (m=1), A006442 (m=2), A084768 (m=3), this sequence (m=4).
Cf. A243007 (a(n)^2), A269732.

Programs

  • Magma
    [Evaluate(LegendrePolynomial(n), 9) : n in [0..40]]; // G. C. Greubel, May 17 2023
    
  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-18*x+x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    LegendreP[Range[0, 40], 9] (* G. C. Greubel, May 17 2023 *)
    a[n_] := 4^n*Sum[(5/4)^k*Binomial[n, k]^2, {k, 0, n}];
    Table[a[n], {n, 0, 16}]  (* Detlef Meya, May 22 2024 *)
  • PARI
    for(n=0,30,print1(subst(pollegendre(n),x,9)","))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)^2*4^k*5^(n-k))} \\ Paul D. Hanna, Sep 29 2012
    
  • SageMath
    [gen_legendre_P(n,0,9) for n in range(41)] # G. C. Greubel, May 17 2023

Formula

G.f.: 1/sqrt(1-18*x+x^2).
Also a(n) = (n+1)-th term of the binomial transform of 1/(1-4x)^(n+1).
From Paul Barry, May 25 2005: (Start)
E.g.f.: exp(9*x) * Bessel_I(0, 2*sqrt(20)*x).
a(n) = Sum_{k=0..n} C(n, k)*C(n+k, k)4^k. (End)
D-finite with recurrence: n*a(n) + 9*(1-2*n)*a(n-1) + (n-1)*a(n-2) = 0. - R. J. Mathar, Sep 27 2012
a(n) = Sum_{k=0..n} binomial(n,k)^2 * 4^k * 5^(n-k). - Paul D. Hanna, Sep 29 2012
a(n) ~ sqrt(200 + 90*sqrt(5))*(9 + 4*sqrt(5))^n/(20*sqrt(Pi*n)) = (2 + sqrt(5))^(2*n+1)/(5^(1/4)*2*sqrt(2*Pi*n)). - Vaclav Kotesovec, Oct 14 2012
a(n) = hypergeom([-n, n+1], [1], -4). - Peter Luschny, May 23 2014
x*exp(Sum_{n >= 1} a(n)*x^n/n) = x + 9*x^2 + 101*x^3 + 1269*x^4 + ... is an integral power series, the o.g.f. for A269732. - Peter Bala, Jan 25 2018
a(n) = (-1)^n * Sum_{k=0..n} (1/18)^(n-2*k) * binomial(-1/2,k) * binomial(k,n-k). - Seiichi Manyama, Aug 28 2025
a(n) = Sum_{k=0..floor(n/2)} 20^k * 9^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, Aug 30 2025

A098270 a(n) = 2^n*P_n(5), 2^n times the Legendre polynomial of order n at 5.

Original entry on oeis.org

1, 10, 148, 2440, 42256, 752800, 13660480, 251113600, 4660568320, 87140108800, 1638884021248, 30970912737280, 587599919386624, 11185644310405120, 213540626285805568, 4086692369433395200, 78378887309200261120
Offset: 0

Views

Author

Paul Barry, Sep 01 2004

Keywords

Comments

Central coefficients of (1 + 10*x + 24*x^2)^n. 2^n*LegendreP(n,k) yields the central coefficients of (1 + 2*k*x + (k^2-1)*x^2)^n, with g.f. 1/sqrt(1 - 4*k*x + 4*x^2).

Crossrefs

Sequences of the form 2^n*LegendreP(n, 2*m+1): A000079 (m=0), A084773 (m=1), this sequence (m=2).

Programs

  • Magma
    [2^n*Evaluate(LegendrePolynomial(n), 5): n in [0..40]]; // G. C. Greubel, May 21 2023
  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-20*x+4*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
    Table[2^n*LegendreP[n, 5], {n,0,40}] (* G. C. Greubel, May 21 2023 *)
  • PARI
    a(n)=pollegendre(n,5)<Charles R Greathouse IV, Oct 25 2011
    
  • Sage
    def A098270(n): return 2^n*gen_legendre_P(n, 0, 5)
    [A098270(n) for n in (0..16)] # Peter Luschny, Oct 14 2012
    

Formula

G.f.: 1/sqrt(1-20*x+4*x^2).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n,k)*binomial(2*(n-k), n)*5^(n-2*k).
D-finite with recurrence: n*a(n) +10*(1-2*n)*a(n-1) +4*(n-1)*a(n-2) = 0. - R. J. Mathar, Sep 26 2012
a(n) ~ sqrt(72+30*sqrt(6))*(10+4*sqrt(6))^n/(12*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 14 2012
a(n) = A059473(n,n). - Alois P. Heinz, Oct 05 2017
From Peter Bala, Nov 28 2021: (Start)
a(n) = (1/3)*Sum_{k >= n} binomial(k,n)^2*(2/3)^k.
a(n) = (4^n)*Sum_{k = 0..n} binomial(n,k)^2*(3/2)^k.
a(n) = (1/3)*(2/3)^n*hypergeometric2F1([n+1, n+1], [1], 2/3).
a(n) = (4^n)*hypergeometric2F1([-n, -n], [1], 3/2)
a(n) = [x^n] ((2*x - 2)*(3 - 2*x))^n.
a(n) = (2^n)*A006442(n). (End)

A335333 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*(2*k+1)*x + x^2).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 37, 63, 1, 1, 9, 73, 305, 321, 1, 1, 11, 121, 847, 2641, 1683, 1, 1, 13, 181, 1809, 10321, 23525, 8989, 1, 1, 15, 253, 3311, 28401, 129367, 213445, 48639, 1, 1, 17, 337, 5473, 63601, 458649, 1651609, 1961825, 265729, 1
Offset: 0

Views

Author

Seiichi Manyama, Jun 02 2020

Keywords

Examples

			Square array begins:
  1,    1,     1,      1,      1,       1, ...
  1,    3,     5,      7,      9,      11, ...
  1,   13,    37,     73,    121,     181, ...
  1,   63,   305,    847,   1809,    3311, ...
  1,  321,  2641,  10321,  28401,   63601, ...
  1, 1683, 23525, 129367, 458649, 1256651, ...
		

Crossrefs

Columns k=0..4 give A000012, A001850, A006442, A084768, A084769.
Rows n=0..6 give A000012, A005408, A003154(n+1), A160674, A144124, A335338, A144126.
Main diagonal gives A331656.
T(n,n-1) gives A331657.

Programs

  • Mathematica
    T[n_, k_] := LegendreP[n, 2*k + 1]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
  • PARI
    T(n, k) = pollegendre(n, 2*k+1);

Formula

T(n,k) is the coefficient of x^n in the expansion of (1 + (2*k+1)*x + k*(k+1)*x^2)^n.
T(n,k) = Sum_{j=0..n} k^j * (k+1)^(n-j) * binomial(n,j)^2.
T(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * binomial(n+j,j).
n * T(n,k) = (2*k+1) * (2*n-1) * T(n-1,k) - (n-1) * T(n-2,k).
T(n,k) = P_n(2*k+1), where P_n is n-th Legendre polynomial.
From Seiichi Manyama, Aug 30 2025: (Start)
T(n,k) = (-1)^n * Sum_{j=0..n} (1/(2*(2*k+1)))^(n-2*j) * binomial(-1/2,j) * binomial(j,n-j).
T(n,k) = Sum_{j=0..floor(n/2)} (k*(k+1))^j * (2*k+1)^(n-2*j) * binomial(n,2*j) * binomial(2*j,j).
E.g.f. of column k: exp((2*k+1)*x) * BesselI(0, 2*sqrt(k*(k+1))*x). (End)

A331656 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * n^k.

Original entry on oeis.org

1, 3, 37, 847, 28401, 1256651, 69125869, 4548342975, 348434664769, 30463322582899, 2993348092318101, 326572612514776079, 39170287549040392369, 5123157953193993402171, 725662909285939100555101, 110662236267661479984580351, 18077209893508013563092846849
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 23 2020

Keywords

Crossrefs

Main diagonal of A335333.

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]
    Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n + 1) x + x^2], {x, 0, n}], {n, 0, 16}]
    Table[LegendreP[n, 2 n + 1], {n, 0, 16}]
    Table[Hypergeometric2F1[-n, n + 1, 1, -n], {n, 0, 16}]
  • PARI
    a(n) = {sum(k=0, n, binomial(n,k) * binomial(n+k,k) * n^k)} \\ Andrew Howroyd, Jan 23 2020

Formula

a(n) = central coefficient of (1 + (2*n + 1)*x + n*(n + 1)*x^2)^n.
a(n) = [x^n] 1 / sqrt(1 - 2*(2*n + 1)*x + x^2).
a(n) = n! * [x^n] exp((2*n + 1)*x) * BesselI(0,2*sqrt(n*(n + 1))*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k * (n + 1)^(n - k).
a(n) = P_n(2*n+1), where P_n is n-th Legendre polynomial.
a(n) ~ exp(1/2) * 4^n * n^(n - 1/2) / sqrt(Pi). - Vaclav Kotesovec, Jan 28 2020
From Seiichi Manyama, Aug 30 2025: (Start)
a(n) = (-1)^n * Sum_{k=0..n} (1/(2*(2*n+1)))^(n-2*k) * binomial(-1/2,k) * binomial(k,n-k).
a(n) = Sum_{k=0..floor(n/2)} (n*(n+1))^k * (2*n+1)^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). (End)

A331657 a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k.

Original entry on oeis.org

1, 1, 13, 305, 10321, 458649, 25289461, 1666406209, 127779121345, 11178899075537, 1098961472475901, 119937806278590321, 14389588419704763409, 1882432013890951832425, 266678501426944160023653, 40673387011956179149166849, 6644919093900517186643470081
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 23 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[(-1)^(n-k)*Binomial(n,k)*Binomial(n+k,k)*n^k:k in [0..n]]:n in [0..16]]; // Marius A. Burtea, Jan 23 2020
  • Mathematica
    Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]
    Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n - 1) x + x^2], {x, 0, n}], {n, 0, 16}]
    Table[LegendreP[n, 2 n - 1], {n, 0, 16}]
    Table[(-1)^n Hypergeometric2F1[-n, n + 1, 1, n], {n, 0, 16}]
  • PARI
    a(n) = {sum(k=0, n, (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k)} \\ Andrew Howroyd, Jan 23 2020
    

Formula

a(n) = central coefficient of (1 + (2*n - 1)*x + n*(n - 1)*x^2)^n.
a(n) = [x^n] 1 / sqrt(1 - 2*(2*n - 1)*x + x^2).
a(n) = n! * [x^n] exp((2*n - 1)*x) * BesselI(0,2*sqrt(n*(n - 1))*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k * (n - 1)^(n - k).
a(n) = P_n(2*n-1), where P_n is n-th Legendre polynomial.
a(n) = (-1)^n * 2F1(-n, n + 1; 1; n).
a(n) ~ 4^n * n^(n - 1/2) / (exp(1/2) * sqrt(Pi)). - Vaclav Kotesovec, Jan 26 2020
From Seiichi Manyama, Aug 30 2025: (Start)
a(n) = (-1)^n * Sum_{k=0..n} (1/(2*(2*n-1)))^(n-2*k) * binomial(-1/2,k) * binomial(k,n-k).
a(n) = Sum_{k=0..floor(n/2)} ((n-1)*n)^k * (2*n-1)^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). (End)

A269730 Dimensions of the 2-polytridendriform operad TDendr_2.

Original entry on oeis.org

1, 5, 31, 215, 1597, 12425, 99955, 824675, 6939769, 59334605, 513972967, 4501041935, 39784038517, 354455513105, 3179928556219, 28701561707675, 260447708523505, 2374690737067925, 21744508765633327, 199877846477679815, 1843718766426242221, 17060955558786455705, 158333204443000060291
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1 - 5*x - Sqrt[1 - 10*x + x^2])/(12*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Apr 24 2016 *)
    Table[-I*LegendreP[n, -1, 2, 5]/Sqrt[6], {n, 1, 20}] (* Vaclav Kotesovec, Apr 24 2016 *)
  • PARI
    A001263(n,k) = binomial(n-1,k-1) * binomial(n, k-1)/k;
    dimTDendr(n,q) = sum(k = 0, n-1, (q+1)^k * q^(n-k-1) * A001263(n,k+1));
    my(q=2); vector(23, n, dimTDendr(n,q)) \\ Gheorghe Coserea, Apr 23 2016
    
  • PARI
    my(q=2, x='x + O('x^24)); Vec(serreverse(x/((1+q*x)*(1+(q+1)*x)))) \\ Gheorghe Coserea, Sep 30 2017

Formula

a(n) = P_n(2), where P_n(x) is the polynomial associated with row n of triangle A126216 in order of decreasing powers of x.
Recurrence: (n+1)*a(n) = 5*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Apr 24 2016
a(n) ~ sqrt(12 + 5*sqrt(6)) * (5 + 2*sqrt(6))^n / (12*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 24 2016
A(x) = -serreverse(A001047(x))(-x). - Gheorghe Coserea, Sep 30 2017
From Peter Bala, Dec 25 2020: (Start)
a(n) = (1/(2*m*(m+1))) * Integral_{x = 1..2*m+1} Legendre_P(n,x) dx at m = 2.
a(n) = (1/(2*n+1)) * (1/(2*m*(m+1))) * ( Legendre_P(n+1,2*m+1) - Legendre_P(n-1,2*m+1) ) at m = 2. (End)
G.f. A(x) = x*exp( Sum_{n >= 1} A006442(n)*x^n/n ). - Peter Bala, Jan 09 2022

Extensions

More terms from Gheorghe Coserea, Apr 23 2016

A387368 a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(n+1,k) * binomial(n+1,n-k).

Original entry on oeis.org

1, 10, 93, 860, 7985, 74550, 699685, 6597400, 62457921, 593346050, 5653702637, 54012503220, 517192500721, 4962377183470, 47698928343285, 459224987322800, 4427611044899585, 42744433267222650, 413145666547033213, 3997556929553596300, 38718094094951086641
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^k * 3^(n-k) * Binomial(n+1,k) * Binomial(n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 29 2025
  • Mathematica
    Table[Sum[2^k * 3^(n-k)*Binomial[n+1,k]*Binomial[n+1, n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 29 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^k*3^(n-k)*binomial(n+1, k)*binomial(n+1, n-k));
    

Formula

a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * binomial(n+1,k) * binomial(n+1,n-k).
n*(n+2)*a(n) = (n+1) * (5*(2*n+1)*a(n-1) - n*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 6^k * 5^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = [x^n] (1+5*x+6*x^2)^(n+1).
E.g.f.: exp(5*x) * BesselI(1, 2*sqrt(6)*x) / sqrt(6), with offset 1.
Showing 1-10 of 14 results. Next