Original entry on oeis.org
1, 25, 1369, 93025, 6974881, 553425625, 45558768025, 3848757330625, 331434586569025, 28966516730025625, 2561512789823546329, 228690489716580520225, 20579914168308199841761, 1864413002713001259355225, 169871744046114667846619929, 15554069096581207471331850625
Offset: 0
G.f.: A(x) = 1 + 9*x + 169*x^2 + 3969*x^3 + 103041*x^4 + 2832489*x^5 +...
-
[Evaluate(LegendrePolynomial(n), 5)^2 : n in [0..40]]; // G. C. Greubel, May 17 2023
-
Table[Sum[6^k * Binomial[2*k, k]^2 * Binomial[n+k, n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 28 2019 *)
LegendreP[Range[0,40], 5]^2 (* G. C. Greubel, May 17 2023 *)
-
{a(n) = sum(k=0, n, 6^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 2^k * binomial(2*k, k) * binomial(n+k, n-k) )^2}
for(n=0, 20, print1(a(n), ", "))
-
/* Using AGM: */
{a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 10^2*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 30 2014
-
[gen_legendre_P(n,0,5)^2 for n in range(41)] # G. C. Greubel, May 17 2023
A330204
Composite numbers k such that P(k, 5) == 5 (mod k), where P(k, 5) = A006442(k) is the k-th Legendre polynomial evaluated at 5.
Original entry on oeis.org
4, 15, 35, 165, 255, 615, 1815, 1876, 2636, 2948, 5380, 5565, 11235, 28545, 288380, 903644, 1807995, 2486165, 2674060, 10538572, 11791595, 14145121, 28558415, 45153277, 45682751
Offset: 1
4 is in the sequence since it is composite and P(4, 5) = 2641 == 5 (mod 4).
-
Select[Range[3000], CompositeQ[#] && Divisible[LegendreP[#, 5] - 5, #] &]
-
isok(k) = Mod(subst(pollegendre(k), x, 5), k) == 5;
forcomposite (k=1, 10000, if (isok(k), print1(k, ", "))); \\ Michel Marcus, Dec 06 2019
-
a, b = 1, 5
for n in range(2, 10000):
a, b = b, ((10*n-5)*b - (n-1)*a)//n
if (b%n == 5%n) and (not Integer(n).is_prime()): print(n) # Robin Visser, Aug 17 2023
A084768
a(n) = P_n(7), where P_n is n-th Legendre polynomial; also, a(n) = central coefficient of (1 + 7*x + 12*x^2)^n.
Original entry on oeis.org
1, 7, 73, 847, 10321, 129367, 1651609, 21360031, 278905249, 3668760487, 48543499753, 645382441711, 8614382884849, 115367108888311, 1549456900170553, 20861640747345727, 281483386791966529, 3805228005705102151, 51527535767904810889, 698796718936034430607
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..875
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- G. Levy, Solutions of second order recurrence equations (2010) PhD Thesis, Florida State University, page 3.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
[Evaluate(LegendrePolynomial(n),7): n in [0..40]]; // G. C. Greubel, May 17 2023
-
Table[LegendreP[n, 7], {n, 0, 20}] (* Vaclav Kotesovec, Jul 31 2013 *)
-
for(n=0,30,print1(subst(pollegendre(n),x,7)","))
-
{a(n)=sum(k=0, n, binomial(n, k)^2*3^k*4^(n-k))} \\ Paul D. Hanna, Sep 28 2012
for(n=0, 20, print1(a(n), ", "))
-
/* From a(n)^2 = A243944(n) (Paul D. Hanna, Aug 18 2014): */
{a(n) = sqrtint( sum(k=0, n, 12^k * binomial(2*k, k)^2 * binomial(n+k, n-k) ) )}
for(n=0, 20, print1(a(n), ", "))
-
[gen_legendre_P(n,0,7) for n in range(41)] # G. C. Greubel, May 17 2023
A084769
a(n) = P_n(9), where P_n is n-th Legendre polynomial; also, a(n) = central coefficient of (1 + 9*x + 20*x^2)^n.
Original entry on oeis.org
1, 9, 121, 1809, 28401, 458649, 7544041, 125700129, 2114588641, 35836273449, 610897146201, 10463745263409, 179939616743121, 3104680678772409, 53721299280288201, 931852905510160449, 16198821321758152641
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Vaclav Kotesovec, Asymptotic of a sums of powers of binomial coefficients * x^k, 2012.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
[Evaluate(LegendrePolynomial(n), 9) : n in [0..40]]; // G. C. Greubel, May 17 2023
-
Table[SeriesCoefficient[1/Sqrt[1-18*x+x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
LegendreP[Range[0, 40], 9] (* G. C. Greubel, May 17 2023 *)
a[n_] := 4^n*Sum[(5/4)^k*Binomial[n, k]^2, {k, 0, n}];
Table[a[n], {n, 0, 16}] (* Detlef Meya, May 22 2024 *)
-
for(n=0,30,print1(subst(pollegendre(n),x,9)","))
-
{a(n)=sum(k=0, n, binomial(n, k)^2*4^k*5^(n-k))} \\ Paul D. Hanna, Sep 29 2012
-
[gen_legendre_P(n,0,9) for n in range(41)] # G. C. Greubel, May 17 2023
A098270
a(n) = 2^n*P_n(5), 2^n times the Legendre polynomial of order n at 5.
Original entry on oeis.org
1, 10, 148, 2440, 42256, 752800, 13660480, 251113600, 4660568320, 87140108800, 1638884021248, 30970912737280, 587599919386624, 11185644310405120, 213540626285805568, 4086692369433395200, 78378887309200261120
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Eric Weisstein's World of Mathematics, Legendre Polynomial.
Sequences of the form 2^n*LegendreP(n, 2*m+1):
A000079 (m=0),
A084773 (m=1), this sequence (m=2).
-
[2^n*Evaluate(LegendrePolynomial(n), 5): n in [0..40]]; // G. C. Greubel, May 21 2023
-
Table[SeriesCoefficient[1/Sqrt[1-20*x+4*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
Table[2^n*LegendreP[n, 5], {n,0,40}] (* G. C. Greubel, May 21 2023 *)
-
a(n)=pollegendre(n,5)<Charles R Greathouse IV, Oct 25 2011
-
def A098270(n): return 2^n*gen_legendre_P(n, 0, 5)
[A098270(n) for n in (0..16)] # Peter Luschny, Oct 14 2012
A335333
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*(2*k+1)*x + x^2).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 37, 63, 1, 1, 9, 73, 305, 321, 1, 1, 11, 121, 847, 2641, 1683, 1, 1, 13, 181, 1809, 10321, 23525, 8989, 1, 1, 15, 253, 3311, 28401, 129367, 213445, 48639, 1, 1, 17, 337, 5473, 63601, 458649, 1651609, 1961825, 265729, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 13, 37, 73, 121, 181, ...
1, 63, 305, 847, 1809, 3311, ...
1, 321, 2641, 10321, 28401, 63601, ...
1, 1683, 23525, 129367, 458649, 1256651, ...
-
T[n_, k_] := LegendreP[n, 2*k + 1]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
-
T(n, k) = pollegendre(n, 2*k+1);
A331656
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * n^k.
Original entry on oeis.org
1, 3, 37, 847, 28401, 1256651, 69125869, 4548342975, 348434664769, 30463322582899, 2993348092318101, 326572612514776079, 39170287549040392369, 5123157953193993402171, 725662909285939100555101, 110662236267661479984580351, 18077209893508013563092846849
Offset: 0
-
Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]
Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n + 1) x + x^2], {x, 0, n}], {n, 0, 16}]
Table[LegendreP[n, 2 n + 1], {n, 0, 16}]
Table[Hypergeometric2F1[-n, n + 1, 1, -n], {n, 0, 16}]
-
a(n) = {sum(k=0, n, binomial(n,k) * binomial(n+k,k) * n^k)} \\ Andrew Howroyd, Jan 23 2020
A331657
a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k.
Original entry on oeis.org
1, 1, 13, 305, 10321, 458649, 25289461, 1666406209, 127779121345, 11178899075537, 1098961472475901, 119937806278590321, 14389588419704763409, 1882432013890951832425, 266678501426944160023653, 40673387011956179149166849, 6644919093900517186643470081
Offset: 0
-
[&+[(-1)^(n-k)*Binomial(n,k)*Binomial(n+k,k)*n^k:k in [0..n]]:n in [0..16]]; // Marius A. Burtea, Jan 23 2020
-
Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]
Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n - 1) x + x^2], {x, 0, n}], {n, 0, 16}]
Table[LegendreP[n, 2 n - 1], {n, 0, 16}]
Table[(-1)^n Hypergeometric2F1[-n, n + 1, 1, n], {n, 0, 16}]
-
a(n) = {sum(k=0, n, (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k)} \\ Andrew Howroyd, Jan 23 2020
A269730
Dimensions of the 2-polytridendriform operad TDendr_2.
Original entry on oeis.org
1, 5, 31, 215, 1597, 12425, 99955, 824675, 6939769, 59334605, 513972967, 4501041935, 39784038517, 354455513105, 3179928556219, 28701561707675, 260447708523505, 2374690737067925, 21744508765633327, 199877846477679815, 1843718766426242221, 17060955558786455705, 158333204443000060291
Offset: 1
-
Rest[CoefficientList[Series[(1 - 5*x - Sqrt[1 - 10*x + x^2])/(12*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Apr 24 2016 *)
Table[-I*LegendreP[n, -1, 2, 5]/Sqrt[6], {n, 1, 20}] (* Vaclav Kotesovec, Apr 24 2016 *)
-
A001263(n,k) = binomial(n-1,k-1) * binomial(n, k-1)/k;
dimTDendr(n,q) = sum(k = 0, n-1, (q+1)^k * q^(n-k-1) * A001263(n,k+1));
my(q=2); vector(23, n, dimTDendr(n,q)) \\ Gheorghe Coserea, Apr 23 2016
-
my(q=2, x='x + O('x^24)); Vec(serreverse(x/((1+q*x)*(1+(q+1)*x)))) \\ Gheorghe Coserea, Sep 30 2017
A387368
a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(n+1,k) * binomial(n+1,n-k).
Original entry on oeis.org
1, 10, 93, 860, 7985, 74550, 699685, 6597400, 62457921, 593346050, 5653702637, 54012503220, 517192500721, 4962377183470, 47698928343285, 459224987322800, 4427611044899585, 42744433267222650, 413145666547033213, 3997556929553596300, 38718094094951086641
Offset: 0
-
[&+[2^k * 3^(n-k) * Binomial(n+1,k) * Binomial(n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 29 2025
-
Table[Sum[2^k * 3^(n-k)*Binomial[n+1,k]*Binomial[n+1, n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 29 2025 *)
-
a(n) = sum(k=0, n, 2^k*3^(n-k)*binomial(n+1, k)*binomial(n+1, n-k));
Showing 1-10 of 14 results.
Comments