cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387369 a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(n+2,k) * binomial(n+2,n-k).

Original entry on oeis.org

1, 15, 174, 1850, 18915, 189525, 1877596, 18476820, 181083285, 1770245675, 17278828842, 168496597230, 1642259489143, 16002398658225, 155919866646840, 1519307275471400, 14806582620440553, 144329229195062535, 1407215890063071910, 13724133021646678050, 133885448856624266571
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^k * 3^(n-k) * Binomial(n+2,k) * Binomial(n+2,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 29 2025
  • Mathematica
    Table[Sum[2^k * 3^(n-k)*Binomial[n+2,k]*Binomial[n+2, n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 29 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^k*3^(n-k)*binomial(n+2, k)*binomial(n+2, n-k));
    

Formula

a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * binomial(n+2,k) * binomial(n+2,n-k).
n*(n+4)*a(n) = (n+2) * (5*(2*n+3)*a(n-1) - (n+1)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 6^k * 5^(n-2*k) * binomial(n+2,n-2*k) * binomial(2*k+2,k).
a(n) = [x^n] (1+5*x+6*x^2)^(n+2).
E.g.f.: exp(5*x) * BesselI(2, 2*sqrt(6)*x) / 6, with offset 2.

A387366 Expansion of 1/(1 - 10*x + x^2)^(3/2).

Original entry on oeis.org

1, 15, 186, 2150, 23955, 260925, 2798740, 29688300, 312289605, 3263403275, 33922215822, 351081270930, 3620347505047, 37217828876025, 381591426746280, 3903412392243800, 39848499404096265, 406072116038615175, 4131456665470332130, 41974347760312761150, 425899035044461953051
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/(1 - 10*x + x^2)^(3/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 29 2025
  • Mathematica
    CoefficientList[Series[1/(1-10*x+x^2)^(3/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 29 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-10*x+x^2)^(3/2))
    

Formula

n*a(n) = 5*(2*n+1)*a(n-1) - (n+1)*a(n-2) for n > 1.
a(n) = ((n+2)/2) * A387368(n).
a(n) = (-1)^n * Sum_{k=0..n} (1/10)^(n-2*k) * binomial(-3/2,k) * binomial(k,n-k).
Showing 1-2 of 2 results.