cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387368 a(n) = Sum_{k=0..n} 2^k * 3^(n-k) * binomial(n+1,k) * binomial(n+1,n-k).

Original entry on oeis.org

1, 10, 93, 860, 7985, 74550, 699685, 6597400, 62457921, 593346050, 5653702637, 54012503220, 517192500721, 4962377183470, 47698928343285, 459224987322800, 4427611044899585, 42744433267222650, 413145666547033213, 3997556929553596300, 38718094094951086641
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^k * 3^(n-k) * Binomial(n+1,k) * Binomial(n+1,n-k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 29 2025
  • Mathematica
    Table[Sum[2^k * 3^(n-k)*Binomial[n+1,k]*Binomial[n+1, n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 29 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^k*3^(n-k)*binomial(n+1, k)*binomial(n+1, n-k));
    

Formula

a(n) = Sum_{k=0..n} 3^k * 2^(n-k) * binomial(n+1,k) * binomial(n+1,n-k).
n*(n+2)*a(n) = (n+1) * (5*(2*n+1)*a(n-1) - n*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 6^k * 5^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = [x^n] (1+5*x+6*x^2)^(n+1).
E.g.f.: exp(5*x) * BesselI(1, 2*sqrt(6)*x) / sqrt(6), with offset 1.

A387367 Expansion of 1/(1 - 10*x + x^2)^(5/2).

Original entry on oeis.org

1, 25, 435, 6475, 88270, 1137150, 14081970, 169370850, 1991916135, 23013193775, 262062237437, 2948690451525, 32845189782860, 362721036253100, 3975956599494420, 43300257350934900, 468875116313950845, 5051523021827188725, 54177811767428268535, 578700942412768257775
Offset: 0

Views

Author

Seiichi Manyama, Aug 27 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/(1 - 10*x + x^2)^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 29 2025
  • Mathematica
    CoefficientList[Series[1/(1-10*x+x^2)^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 29 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/(1-10*x+x^2)^(5/2))
    

Formula

n*a(n) = 5*(2*n+3)*a(n-1) - (n+3)*a(n-2) for n > 1.
a(n) = (binomial(n+4,2)/6) * A387369(n).
a(n) = (-1)^n * Sum_{k=0..n} (1/10)^(n-2*k) * binomial(-5/2,k) * binomial(k,n-k).
Showing 1-2 of 2 results.