Original entry on oeis.org
1, 81, 14641, 3272481, 806616801, 210358905201, 56912554609681, 15800522430616641, 4471485120646226881, 1284238494711502355601, 373195323236525968732401, 109489964937514282794301281, 32378265673661271315300820641, 9639042117142706280223219663281
Offset: 0
G.f.: A(x) = 1 + 81*x + 14641*x^2 + 3272481*x^3 + 806616801*x^4 +...
-
[Evaluate(LegendrePolynomial(n),9)^2 : n in [0..30]]; // G. C. Greubel, May 17 2023
-
Table[SeriesCoefficient[1/Sqrt[1 -18x +x^2], {x,0,n}], {n,0,20}]^2 (* Vincenzo Librandi, Feb 14 2018 *)
LegendreP[Range[0,30], 9]^2 (* G. C. Greubel, May 17 2023 *)
-
{a(n) = sum(k=0, n, 20^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 4^k * binomial(2*k, k) * binomial(n+k, n-k) )^2}
for(n=0, 20, print1(a(n), ", "))
{a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 18^2*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 30 2014
-
[gen_legendre_P(n,0,9)^2 for n in range(41)] # G. C. Greubel, May 17 2023
A006442
Expansion of 1/sqrt(1 - 10*x + x^2).
Original entry on oeis.org
1, 5, 37, 305, 2641, 23525, 213445, 1961825, 18205345, 170195525, 1600472677, 15122515985, 143457011569, 1365435096485, 13033485491077, 124715953657025, 1195966908404545, 11490534389896325, 110584004488276645, 1065853221648055025
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from T. D. Noe)
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
- T. R. S. Walsh, Number of sensed planar maps with n edges and m vertices
-
[Evaluate(LegendrePolynomial(n), 5): n in [0..40]]; // G. C. Greubel, May 21 2023
-
seq(orthopoly[P](n,5), n = 0 .. 20); # Robert Israel, Aug 18 2014
-
Table[LegendreP[n, 5], {n, 0, 19}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
CoefficientList[Series[1 / Sqrt[1 - 10 x + x^2], {x, 0, 20}], x] (* Vincenzo Librandi, Nov 23 2014 *)
-
a(n)=subst(pollegendre(n),x,5)
-
/* as lattice paths: same as in A092566 but use */
steps=[[1,0], [1,0], [0,1], [1,1]]; /* note the double [1,0] */
/* Joerg Arndt, Jul 01 2011 */
-
{a(n)=sum(k=0,n,binomial(n,k)^2*2^k*3^(n-k))} /* Paul D. Hanna */
-
{a(n) = sum(k=0, n, 2^k * binomial(2*k, k) * binomial(n+k, n-k) )}
for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 17 2014
-
[gen_legendre_P(n,0,5) for n in range(41)] # G. C. Greubel, May 21 2023
A084768
a(n) = P_n(7), where P_n is n-th Legendre polynomial; also, a(n) = central coefficient of (1 + 7*x + 12*x^2)^n.
Original entry on oeis.org
1, 7, 73, 847, 10321, 129367, 1651609, 21360031, 278905249, 3668760487, 48543499753, 645382441711, 8614382884849, 115367108888311, 1549456900170553, 20861640747345727, 281483386791966529, 3805228005705102151, 51527535767904810889, 698796718936034430607
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..875
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- G. Levy, Solutions of second order recurrence equations (2010) PhD Thesis, Florida State University, page 3.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
[Evaluate(LegendrePolynomial(n),7): n in [0..40]]; // G. C. Greubel, May 17 2023
-
Table[LegendreP[n, 7], {n, 0, 20}] (* Vaclav Kotesovec, Jul 31 2013 *)
-
for(n=0,30,print1(subst(pollegendre(n),x,7)","))
-
{a(n)=sum(k=0, n, binomial(n, k)^2*3^k*4^(n-k))} \\ Paul D. Hanna, Sep 28 2012
for(n=0, 20, print1(a(n), ", "))
-
/* From a(n)^2 = A243944(n) (Paul D. Hanna, Aug 18 2014): */
{a(n) = sqrtint( sum(k=0, n, 12^k * binomial(2*k, k)^2 * binomial(n+k, n-k) ) )}
for(n=0, 20, print1(a(n), ", "))
-
[gen_legendre_P(n,0,7) for n in range(41)] # G. C. Greubel, May 17 2023
A243946
Expansion of sqrt( (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)) ).
Original entry on oeis.org
1, 7, 91, 1345, 20995, 337877, 5544709, 92234527, 1549694195, 26237641045, 446925926881, 7650344197987, 131489964887341, 2267722252458475, 39224201631222475, 680160975405238145, 11820134678459908115, 205812328555924135045, 3589742656727603141425, 62707329988264214752675
Offset: 0
G.f.: A(x) = 1 + 7*x + 91*x^2 + 1345*x^3 + 20995*x^4 + 337877*x^5 + ...,
where A(x)^2 = (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)).
-
seq(add(binomial(n,k)*binomial(n+k,k)*binomial(2*n+2*k,n+k), k = 0..n)/binomial(2*n,n), n = 0..20); # Peter Bala, Mar 14 2018
-
a[n_] := Hypergeometric2F1[-n, n + 1/2, 1, -4];
Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 16 2018 *)
CoefficientList[Series[Sqrt[(1+x+Sqrt[1-18x+x^2])/(2(1-18x+x^2))],{x,0,20}],x] (* Harvey P. Dale, Dec 26 2019 *)
a[n_] := Sum[(5^k Gamma[2 n + 1])/(Gamma[2 k + 1]*Gamma[n - k + 1]^2), {k, 0, n}];
Flatten[Table[a[n], {n, 0, 19}]] (* Detlef Meya, May 22 2024 *)
-
/* From definition: */
{a(n)=polcoeff( sqrt( (1+x + sqrt(1-18*x+x^2 +x*O(x^n))) / (2*(1-18*x+x^2 +x*O(x^n))) ), n)}
for(n=0, 20, print1(a(n), ", "))
-
/* From a(n) = sqrt( A243945(2*n) ): */
{a(n)=sqrtint( sum(k=0, 2*n, binomial(2*k, k)^2*binomial(2*n+k, 2*n-k)) )}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 5^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))} \\ Seiichi Manyama, Aug 25 2020
-
from math import comb
def A243946(n): return sum(5**(n-k)*comb(m:=k<<1,k)*comb(n<<1,m) for k in range(n+1)) # Chai Wah Wu, Mar 23 2023
A243947
Expansion of g.f. sqrt( (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)) ).
Original entry on oeis.org
1, 11, 155, 2365, 37555, 610897, 10098997, 168894355, 2849270515, 48395044705, 826479148001, 14177519463191, 244109912494525, 4216385987238575, 73024851218517275, 1267712063327871245, 22052786911315216595, 384321597582115655825, 6708530714274563938225
Offset: 0
G.f.: A(x) = 1 + 11*x + 155*x^2 + 2365*x^3 + 37555*x^4 + 610897*x^5 + ...
where
A(x)^2 = (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)).
-
seq(add(1/2*binomial(2*k+1,k)*binomial(n,k)*binomial(2*n+2*k+2,2*n+1)/binomial(n+k+1,n), k = 0..n), n = 0..20); # Peter Bala, Mar 15 2018
-
CoefficientList[Series[Sqrt[((1+x-Sqrt[1-18x+x^2]))/(10x(1-18x+x^2))],{x,0,20}],x] (* Harvey P. Dale, Jul 31 2016 *)
a[n_] := Hypergeometric2F1[-n, n + 3/2, 1, -4];
Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 16 2018 *)
-
/* From definition: */
{a(n)=polcoeff( sqrt( (1+x - sqrt(1-18*x+x^2 +x^2*O(x^n))) / (10*x*(1-18*x+x^2 +x*O(x^n))) ), n)}
for(n=0, 20, print1(a(n), ", "))
-
/* From a(n) = sqrt( A243945(2*n+1)/5 ): */
{a(n)=sqrtint( (1/5)*sum(k=0, 2*n+1, binomial(2*k, k)^2*binomial(2*n+k+1, 2*n-k+1)) )}
for(n=0, 20, print1(a(n), ", "))
-
from math import comb
def A243947(n): return sum(5**(n-k)*comb(m:=k<<1,k)*comb((n<<1)+1,m) for k in range(n+1)) # Chai Wah Wu, Mar 23 2023
A335333
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*(2*k+1)*x + x^2).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 37, 63, 1, 1, 9, 73, 305, 321, 1, 1, 11, 121, 847, 2641, 1683, 1, 1, 13, 181, 1809, 10321, 23525, 8989, 1, 1, 15, 253, 3311, 28401, 129367, 213445, 48639, 1, 1, 17, 337, 5473, 63601, 458649, 1651609, 1961825, 265729, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 13, 37, 73, 121, 181, ...
1, 63, 305, 847, 1809, 3311, ...
1, 321, 2641, 10321, 28401, 63601, ...
1, 1683, 23525, 129367, 458649, 1256651, ...
-
T[n_, k_] := LegendreP[n, 2*k + 1]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
-
T(n, k) = pollegendre(n, 2*k+1);
A300945
Rectangular array A(n, k) = hypergeom([-k, k + n/2 - 1], [1], -4) with row n >= 0 and k >= 0, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 3, 25, 1, 5, 43, 425, 1, 7, 65, 661, 7025, 1, 9, 91, 965, 10515, 116625, 1, 11, 121, 1345, 15105, 171097, 1951625, 1, 13, 155, 1809, 20995, 243525, 2828101, 32903225, 1, 15, 193, 2365, 28401, 337877, 4001345, 47284251, 558265825
Offset: 0
[0] 1, 1, 25, 425, 7025, 116625, 1951625, 32903225, ... [A299845]
[1] 1, 3, 43, 661, 10515, 171097, 2828101, 47284251, ... [A299506]
[2] 1, 5, 65, 965, 15105, 243525, 4001345, 66622085, ...
[3] 1, 7, 91, 1345, 20995, 337877, 5544709, 92234527, ... [A243946]
[4] 1, 9, 121, 1809, 28401, 458649, 7544041, 125700129, ... [A084769]
[5] 1, 11, 155, 2365, 37555, 610897, 10098997, 168894355, ... [A243947]
[6] 1, 13, 193, 3021, 48705, 800269, 13324417, 224028877, ...
-
Arow[n_, len_] := Table[Hypergeometric2F1[-k, k + n/2 - 1, 1, -4], {k, 0, len}];
Table[Print[Arow[n, 7]], {n, 0, 6}];
T[n_, k_] := If[k==0, 1, 4^k*Sum[(5/4)^j*Binomial[k, j]*Binomial[k - 2 + ((n - k)/2), j - 2 + ((n - k)/2)] ,{j, 0, n}]]; Flatten[Table[T[n, k],{n, 0, 8}, {k, 0, n}]] (* Detlef Meya, May 28 2024 *)
A331656
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * n^k.
Original entry on oeis.org
1, 3, 37, 847, 28401, 1256651, 69125869, 4548342975, 348434664769, 30463322582899, 2993348092318101, 326572612514776079, 39170287549040392369, 5123157953193993402171, 725662909285939100555101, 110662236267661479984580351, 18077209893508013563092846849
Offset: 0
-
Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]
Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n + 1) x + x^2], {x, 0, n}], {n, 0, 16}]
Table[LegendreP[n, 2 n + 1], {n, 0, 16}]
Table[Hypergeometric2F1[-n, n + 1, 1, -n], {n, 0, 16}]
-
a(n) = {sum(k=0, n, binomial(n,k) * binomial(n+k,k) * n^k)} \\ Andrew Howroyd, Jan 23 2020
A331657
a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k.
Original entry on oeis.org
1, 1, 13, 305, 10321, 458649, 25289461, 1666406209, 127779121345, 11178899075537, 1098961472475901, 119937806278590321, 14389588419704763409, 1882432013890951832425, 266678501426944160023653, 40673387011956179149166849, 6644919093900517186643470081
Offset: 0
-
[&+[(-1)^(n-k)*Binomial(n,k)*Binomial(n+k,k)*n^k:k in [0..n]]:n in [0..16]]; // Marius A. Burtea, Jan 23 2020
-
Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]
Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n - 1) x + x^2], {x, 0, n}], {n, 0, 16}]
Table[LegendreP[n, 2 n - 1], {n, 0, 16}]
Table[(-1)^n Hypergeometric2F1[-n, n + 1, 1, n], {n, 0, 16}]
-
a(n) = {sum(k=0, n, (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k)} \\ Andrew Howroyd, Jan 23 2020
A269732
Dimensions of the 4-polytridendriform operad TDendr_4.
Original entry on oeis.org
1, 9, 101, 1269, 17081, 240849, 3511741, 52515549, 801029681, 12414177369, 194922521301, 3094216933509, 49575333021801, 800645021406369, 13020241953611181, 213025792632813549, 3504075376813414241, 57914491106005287849, 961297812844696640581, 16017765308027639317269, 267831397282643166904601, 4492625888792276208945009, 75578709400747348254905501
Offset: 1
-
I:=[1,9]; [n le 2 select I[n] else (9*(2*n-1)*Self(n-1)-(n-2)*Self(n-2))/(n+1): n in [1..30]]; // Vincenzo Librandi, Nov 29 2016
-
Rest[CoefficientList[Series[(1 - 9*x - Sqrt[1 - 18*x + x^2])/(40*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Apr 24 2016 *)
Table[-I*LegendreP[n, -1, 2, 9]/(2*Sqrt[5]), {n, 1, 20}] (* Vaclav Kotesovec, Apr 24 2016 *)
RecurrenceTable[{a[1] == 1, a[2] == 9, (n+1) a[n] == 9 (2 n - 1) a[n-1] - (n - 2) a[n-2]}, a, {n, 25}] (* Vincenzo Librandi, Nov 29 2016 *)
-
A001263(n,k) = binomial(n-1,k-1) * binomial(n, k-1)/k;
dimTDendr(n,q) = sum(k = 0, n-1, (q+1)^k * q^(n-k-1) * A001263(n,k+1));
my(q=4); vector(23, n, dimTDendr(n,q)) \\ Gheorghe Coserea, Apr 23 2016
-
my(q=4, x='x + O('x^24)); Vec(serreverse(x/((1+q*x)*(1+(q+1)*x)))) \\ Gheorghe Coserea, Sep 30 2017
Showing 1-10 of 12 results.
Comments