cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A243007 a(n) = A084769(n)^2.

Original entry on oeis.org

1, 81, 14641, 3272481, 806616801, 210358905201, 56912554609681, 15800522430616641, 4471485120646226881, 1284238494711502355601, 373195323236525968732401, 109489964937514282794301281, 32378265673661271315300820641, 9639042117142706280223219663281
Offset: 0

Views

Author

Paul D. Hanna, Aug 18 2014

Keywords

Comments

In general, we have the binomial identity:
if b(n) = Sum_{k=0..n} t^k * C(2*k, k) * C(n+k, n-k),
then b(n)^2 = Sum_{k=0..n} (t^2+t)^k * C(2*k, k)^2 * C(n+k, n-k),
where the g.f. of b(n) is 1/sqrt(1 - (4*t+2)*x + x^2),
and the g.f. of b(n)^2 is 1 / AGM(1-x, sqrt((1+x)^2 - (4*t+2)^2*x)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
Note that the g.f. of A084769 is 1/sqrt(1 - 18*x + x^2).
Limit_{n -> oo} a(n+1)/a(n) = (9 + 4*sqrt(5))^2 = 161 + 72*sqrt(5).

Examples

			G.f.: A(x) = 1 + 81*x + 14641*x^2 + 3272481*x^3 + 806616801*x^4 +...
		

Crossrefs

Sequences of the form LegendreP(n, 2*m+1)^2: A000012 (m=0), A243949 (m=1), A243943 (m=2), A243944 (m=3), this sequence (m=4).
Cf. A084769.

Programs

  • Magma
    [Evaluate(LegendrePolynomial(n),9)^2 : n in [0..30]]; // G. C. Greubel, May 17 2023
    
  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1 -18x +x^2], {x,0,n}], {n,0,20}]^2 (* Vincenzo Librandi, Feb 14 2018 *)
    LegendreP[Range[0,30], 9]^2 (* G. C. Greubel, May 17 2023 *)
  • PARI
    {a(n) = sum(k=0, n, 20^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 4^k * binomial(2*k, k) * binomial(n+k, n-k) )^2}
    for(n=0, 20, print1(a(n), ", "))
    {a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 18^2*x +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 30 2014
    
  • SageMath
    [gen_legendre_P(n,0,9)^2 for n in range(41)] # G. C. Greubel, May 17 2023

Formula

G.f.: 1 / AGM(1-x, sqrt(1- 322*x + x^2)). - Paul D. Hanna, Aug 30 2014
a(n) = Sum_{k=0..n} 20^k * C(2*k, k)^2 * C(n+k, n-k).
a(n)^(1/2) = Sum_{k=0..n} 4^k * C(2*k, k) * C(n+k, n-k).
a(n) ~ (2 + sqrt(5))^(4*n+2) / (8*sqrt(5)*Pi*n). - Vaclav Kotesovec, Sep 28 2019

A006442 Expansion of 1/sqrt(1 - 10*x + x^2).

Original entry on oeis.org

1, 5, 37, 305, 2641, 23525, 213445, 1961825, 18205345, 170195525, 1600472677, 15122515985, 143457011569, 1365435096485, 13033485491077, 124715953657025, 1195966908404545, 11490534389896325, 110584004488276645, 1065853221648055025
Offset: 0

Views

Author

Keywords

Comments

Number of Delannoy paths from (0,0) to (n,n) with steps U(0,1), H(1,0) and D(1,1) where H can choose from two colors. - Paul Barry, May 25 2005
Number of lattice paths from (0,0) to (n,n) using steps (0,1), (1,1), and two kinds of steps (1,0). - Joerg Arndt, Jul 01 2011
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. - Peter Bala, Jan 09 2022

Crossrefs

Column k=2 of A335333.
Sequences of the form LegendreP(n, 2*m+1): A000012 (m=0), A001850 (m=1), this sequence (m=2), A084768 (m=3), A084769 (m=4).
Cf. A098270, A243943 (a(n)^2).

Programs

  • Magma
    [Evaluate(LegendrePolynomial(n), 5): n in [0..40]]; // G. C. Greubel, May 21 2023
    
  • Maple
    seq(orthopoly[P](n,5), n = 0 .. 20); # Robert Israel, Aug 18 2014
  • Mathematica
    Table[LegendreP[n, 5], {n, 0, 19}] (* Arkadiusz Wesolowski, Aug 13 2012 *)
    CoefficientList[Series[1 / Sqrt[1 - 10 x + x^2], {x, 0, 20}], x] (* Vincenzo Librandi, Nov 23 2014 *)
  • PARI
    a(n)=subst(pollegendre(n),x,5)
    
  • PARI
    /* as lattice paths: same as in A092566 but use */
    steps=[[1,0], [1,0], [0,1], [1,1]]; /* note the double [1,0] */
    /* Joerg Arndt, Jul 01 2011 */
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^2*2^k*3^(n-k))} /* Paul D. Hanna */
    
  • PARI
    {a(n) = sum(k=0, n, 2^k * binomial(2*k, k) * binomial(n+k, n-k) )}
    for(n=0, 25, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 17 2014
    
  • SageMath
    [gen_legendre_P(n,0,5) for n in range(41)] # G. C. Greubel, May 21 2023

Formula

Legendre polynomial evaluated at 5. - Michael Somos, Dec 04 2001
G.f.: 1/sqrt(1 - 10*x + x^2).
a(n) equals the central coefficient of (1 + 5*x + 6*x^2)^n. - Paul D. Hanna, Jun 03 2003
a(n) equals the (n+1)-th term of the binomial transform of 1/(1-2x)^(n+1). - Paul D. Hanna, Sep 29 2003
a(n) = Sum_{k=0..n} 2^k*binomial(n, k)*binomial(n+k, k). - Benoit Cloitre, Apr 13 2004
a(n) = Sum_{k=0..n} binomial(n,k)^2 * 2^k * 3^(n-k). - Paul D. Hanna, Feb 04 2012
E.g.f.: exp(5*x) * Bessel_I(0, 2*sqrt(6)*x). - Paul Barry, May 25 2005
D-finite with recurrence: n*a(n) - 5*(2n-1)*a(n-1) + (n-1)*a(n-2) = 0 [Eq (4) in the T. D. Noe article]. R. J. Mathar, Jun 26 2012
a(n) ~ (5 + 2*sqrt(6))^n/(2*sqrt(Pi*n)*sqrt(5*sqrt(6) - 12)). - Vaclav Kotesovec, Oct 05 2012
a(n) = hypergeom([-n, n+1], [1], -2). - Peter Luschny, May 23 2014
a(n) = Sum_{k=0..n} 2^k * C(2*k, k) * C(n+k, n-k). - Paul D. Hanna, Aug 17 2014
a(n) = Sum_{k=0..n} (k+1) * 3^k * (-1)^(n-k) * binomial(n,k) * binomial(n+k+1,n) / (n+k+1). - Vladimir Kruchinin, Nov 23 2014
From Peter Bala, Nov 28 2021: (Start)
a(n) = (1/3)*(1/2)^n*Sum_{k >= n} binomial(k,n)^2*(2/3)^k.
a(n) = (1/3)^(n+1)*hypergeom([n+1, n+1], [1], 2/3).
a(n) = (2^n)*hypergeom([-n, -n], [1], 3/2).
a(n) = [x^n] ((x - 1)*(3 - 2*x))^n
a(n) = (1/2)^n*A098270(n). (End)
a(n) = (-1)^n * Sum_{k=0..n} (1/10)^(n-2*k) * binomial(-1/2,k) * binomial(k,n-k). - Seiichi Manyama, Aug 28 2025
a(n) = Sum_{k=0..floor(n/2)} 6^k * 5^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, Aug 30 2025

A084768 a(n) = P_n(7), where P_n is n-th Legendre polynomial; also, a(n) = central coefficient of (1 + 7*x + 12*x^2)^n.

Original entry on oeis.org

1, 7, 73, 847, 10321, 129367, 1651609, 21360031, 278905249, 3668760487, 48543499753, 645382441711, 8614382884849, 115367108888311, 1549456900170553, 20861640747345727, 281483386791966529, 3805228005705102151, 51527535767904810889, 698796718936034430607
Offset: 0

Views

Author

Paul D. Hanna, Jun 03 2003

Keywords

Comments

More generally, given fixed parameters b and c, we have the identities:
(1) a(n) = Sum_{k=0..n} binomial(n,k)^2 * b^k * c^(n-k);
(2) a(n) = [x^n] (1 + (b+c)*x + b*c*x^2)^n;
(3) g.f.: 1/sqrt(1 - 2*(b+c)*x + (b-c)^2*x^2);
(4) Sum_{n>=1} a(n)*x^n/n = log(G(x)) where G(x) = 1 + (b+c)*x*G(x) + b*c*x^2*G(x)^2.
Number of directed 2-D walks of length 2n starting at (0,0) and ending on the X-axis using steps NE, SE, NE, SW and avoiding NE followed by SE. - David Scambler, Jun 24 2013

Crossrefs

Column k=3 of A335333.
Sequences of the form LegendreP(n, 2*m+1): A000012 (m=0), A001850 (m=1), A006442 (m=2), this sequence (m=3), A084769 (m=4).
Cf. A084774, A243944 (a(n)^2).

Programs

  • Magma
    [Evaluate(LegendrePolynomial(n),7): n in [0..40]]; // G. C. Greubel, May 17 2023
    
  • Mathematica
    Table[LegendreP[n, 7], {n, 0, 20}] (* Vaclav Kotesovec, Jul 31 2013 *)
  • PARI
    for(n=0,30,print1(subst(pollegendre(n),x,7)","))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)^2*3^k*4^(n-k))} \\ Paul D. Hanna, Sep 28 2012
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From a(n)^2 = A243944(n) (Paul D. Hanna, Aug 18 2014): */
    {a(n) = sqrtint( sum(k=0, n, 12^k * binomial(2*k, k)^2 * binomial(n+k, n-k) ) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • SageMath
    [gen_legendre_P(n,0,7) for n in range(41)] # G. C. Greubel, May 17 2023

Formula

G.f.: 1/sqrt(1 - 14*x + x^2).
Also a(n) = (n+1)-th term of the binomial transform of 1/(1-3x)^(n+1).
a(n) = Sum_{k=0..n} 3^k*C(n,k)*C(n+k,k). - Benoit Cloitre, Apr 13 2004
E.g.f.: exp(7*x) * Bessel_I(0, 2*sqrt(12)*x). - Paul Barry, May 25 2005
D-finite with recurrence: n*a(n) + 7*(1-2*n)*a(n-1) + (n-1)*a(n-2) = 0. - R. J. Mathar, Sep 27 2012
a(n) = Sum_{k=0..n} C(n,k)^2 * 3^k * 4^(n-k). - Paul D. Hanna, Sep 28 2012
a(n) ~ (7+4*sqrt(3))^(n+1/2)/(2*3^(1/4)*sqrt(2*Pi*n)). - Vaclav Kotesovec, Jul 31 2013
a(n) = hypergeom([-n, n+1], [1], -3). - Peter Luschny, May 23 2014
a(n)^2 = Sum_{k=0..n} 12^k * C(2*k, k)^2 * C(n+k, n-k) = A243944(n). - Paul D. Hanna, Aug 18 2014
From Peter Bala, Apr 17 2024: (Start)
a(n) = (1/4)*(1/3)^n*Sum_{k >= n} binomial(k, n)^2*(3/4)^k.
a(n) = (1/4)^(n+1)*hypergeom([n+1, n+1], [1], 3/4).
a(n) = [x^n] ((1 + x)*(4 + 3*x))^n = [x^n] ((1 + 3*x)*(1 + 4*x))^n.
a(n) = (3^n)*hypergeom([-n, -n], [1], 4/3) = (4^n)*hypergeom([-n, -n], [1], 3/4).
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
a(n) = (-1)^n * Sum_{k = 0..n} (-4)^k*binomial(2*k, k)*binomial(n+k, n-k).
G.f: Sum_{n >= 0} (3^n)*binomial(2*n, n)*x^n/(1 - x)^(2*n+1) = 1 + 7*x + 73*x^2 + 847^x^3 + .... (End)
a(n) = (-1)^n * Sum_{k=0..n} (1/14)^(n-2*k) * binomial(-1/2,k) * binomial(k,n-k). - Seiichi Manyama, Aug 28 2025
a(n) = Sum_{k=0..floor(n/2)} 12^k * 7^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, Aug 30 2025

A243946 Expansion of sqrt( (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)) ).

Original entry on oeis.org

1, 7, 91, 1345, 20995, 337877, 5544709, 92234527, 1549694195, 26237641045, 446925926881, 7650344197987, 131489964887341, 2267722252458475, 39224201631222475, 680160975405238145, 11820134678459908115, 205812328555924135045, 3589742656727603141425, 62707329988264214752675
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2014

Keywords

Comments

Square each term to form a bisection of A243945.
Limit_{n->oo} a(n+1)/a(n) = 9 + 4*sqrt(5).

Examples

			G.f.: A(x) = 1 + 7*x + 91*x^2 + 1345*x^3 + 20995*x^4 + 337877*x^5 + ...,
where A(x)^2 = (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)).
		

Crossrefs

Programs

  • Maple
    seq(add(binomial(n,k)*binomial(n+k,k)*binomial(2*n+2*k,n+k), k = 0..n)/binomial(2*n,n), n = 0..20); # Peter Bala, Mar 14 2018
  • Mathematica
    a[n_] := Hypergeometric2F1[-n, n + 1/2, 1, -4];
    Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 16 2018 *)
    CoefficientList[Series[Sqrt[(1+x+Sqrt[1-18x+x^2])/(2(1-18x+x^2))],{x,0,20}],x] (* Harvey P. Dale, Dec 26 2019 *)
    a[n_] := Sum[(5^k Gamma[2 n + 1])/(Gamma[2 k + 1]*Gamma[n - k + 1]^2), {k, 0, n}];
    Flatten[Table[a[n], {n, 0, 19}]] (* Detlef Meya, May 22 2024 *)
  • PARI
    /* From definition: */
    {a(n)=polcoeff( sqrt( (1+x + sqrt(1-18*x+x^2 +x*O(x^n))) / (2*(1-18*x+x^2 +x*O(x^n))) ), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From a(n) = sqrt( A243945(2*n) ): */
    {a(n)=sqrtint( sum(k=0, 2*n, binomial(2*k, k)^2*binomial(2*n+k, 2*n-k)) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 5^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))} \\ Seiichi Manyama, Aug 25 2020
    
  • Python
    from math import comb
    def A243946(n): return sum(5**(n-k)*comb(m:=k<<1,k)*comb(n<<1,m) for k in range(n+1)) # Chai Wah Wu, Mar 23 2023

Formula

a(n)^2 = Sum_{k=0..2*n} C(2*k, k)^2 * C(2*n+k, 2*n-k).
a(n) ~ sqrt(2+sqrt(5)) * (9+4*sqrt(5))^n / (2*sqrt(2*Pi*n)). - Vaclav Kotesovec, Aug 18 2014. Equivalently, a(n) ~ phi^(6*n + 3/2) / (2*sqrt(2*Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
From Peter Bala, Mar 14 2018: (Start)
a(n) = P(2*n,sqrt(5)), where P(n,x) denotes the n-th Legendre polynomial. See A008316.
a(n) = (1/C(2*n,n))*Sum_{k = 0..n} C(n,k)*C(n+k,k)* C(2*n+2*k,n+k). In general, P(2*n,sqrt(1 + 4*x)) = (1/C(2*n,n))*Sum_{k=0..n} C(n,k)*C(n+k,k)*C(2*n+2*k,n+k)*x^k.
a(n) = Sum_{k = 0..2*n} C(2*n,k)^2 * phi^(2*n-2*k), where phi = (sqrt(5) + 1)/2.
a(n) = Sum_{k = 0..2*n} C(2*n,k)*C(2*n+k,k)*Phi^k, where Phi = (sqrt(5) - 1)/2. (End)
a(n) = hypergeom([-n, n + 1/2], [1], -4). - Peter Luschny, Mar 16 2018
D-finite with recurrence: n*(2*n-1)*(4*n-5)*a(n) -(4*n-3)*(36*n^2-54*n+11)*a(n-1) +(n-1)*(4*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 20 2020
a(n) = Sum_{k=0..n} 5^(n-k) * binomial(2*k,k) * binomial(2*n,2*k). - Seiichi Manyama, Aug 25 2020

A243947 Expansion of g.f. sqrt( (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)) ).

Original entry on oeis.org

1, 11, 155, 2365, 37555, 610897, 10098997, 168894355, 2849270515, 48395044705, 826479148001, 14177519463191, 244109912494525, 4216385987238575, 73024851218517275, 1267712063327871245, 22052786911315216595, 384321597582115655825, 6708530714274563938225
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2014

Keywords

Comments

Multiply the square of each term by 5 to form a bisection of A243945.
Limit_{n->oo} a(n+1)/a(n) = 9 + 4*sqrt(5).

Examples

			G.f.: A(x) = 1 + 11*x + 155*x^2 + 2365*x^3 + 37555*x^4 + 610897*x^5 + ...
where
A(x)^2 = (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)).
		

Crossrefs

Programs

  • Maple
    seq(add(1/2*binomial(2*k+1,k)*binomial(n,k)*binomial(2*n+2*k+2,2*n+1)/binomial(n+k+1,n), k = 0..n), n = 0..20); # Peter Bala, Mar 15 2018
  • Mathematica
    CoefficientList[Series[Sqrt[((1+x-Sqrt[1-18x+x^2]))/(10x(1-18x+x^2))],{x,0,20}],x] (* Harvey P. Dale, Jul 31 2016 *)
    a[n_] := Hypergeometric2F1[-n, n + 3/2, 1, -4];
    Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 16 2018 *)
  • PARI
    /* From definition: */
    {a(n)=polcoeff( sqrt( (1+x - sqrt(1-18*x+x^2 +x^2*O(x^n))) / (10*x*(1-18*x+x^2 +x*O(x^n))) ), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From a(n) = sqrt( A243945(2*n+1)/5 ): */
    {a(n)=sqrtint( (1/5)*sum(k=0, 2*n+1, binomial(2*k, k)^2*binomial(2*n+k+1, 2*n-k+1)) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • Python
    from math import comb
    def A243947(n): return sum(5**(n-k)*comb(m:=k<<1,k)*comb((n<<1)+1,m) for k in range(n+1)) # Chai Wah Wu, Mar 23 2023

Formula

a(n)^2 = (1/5) * Sum_{k=0..2*n+1} C(2*k, k)^2 * C(2*n+k+1, 2*n-k+1).
a(n) ~ (9+4*sqrt(5))^(n+1) / (2*5^(1/4)*sqrt(2*Pi*n) * sqrt(5+2*sqrt(5))). - Vaclav Kotesovec, Aug 18 2014. Equivalently, a(n) ~ phi^(6*n + 9/2) / (2^(3/2) * sqrt(5*Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
From Peter Bala, Mar 15 2018: (Start)
a(n) = (1/sqrt(5))*P(2*n+1,sqrt(5)), where P(n,x) denotes the n-th Legendre polynomial. See A008316.
a(n) = Sum_{k = 0..n} (1/2)*C(2*k+1,k)*C(n,k)*C(2*n+2*k+2,2*n+1)/C(n+k+1,n). In general, (1/sqrt(1 + 4*x))*P(2*n+1,sqrt(1+4*x)) = (1/(2*C(2*n+1,n))) * Sum_{k = 0..n} C(n,k)*C(n+k+1,k)*C(2*n+2*k+2,n+k+1)*x^k.
a(n) = (1/sqrt(5))*Sum_{k = 0..2*n+1} C(2*n+1,k)^2 * phi^(2*n-2*k+1), where phi = (sqrt(5) + 1)/2.
a(n) = (1/sqrt(5))*Sum_{k = 0..2*n+1} C(2*n+1,k)*C(2*n+1+k,k) * Phi^k, where Phi = (sqrt(5) - 1)/2. (End)
a(n) = hypergeom([-n, n + 3/2], [1], -4). - Peter Luschny, Mar 16 2018
From Peter Bala, Mar 17 2018: (Start)
a(n) = Sum_{k = 0..n} C(2*n+1,2*k)*C(2*k,k)*5^(n-k).
D-finite with recurrence: n*(4*n-3)*(2*n+1)*a(n) = (4*n-1)*(36*n^2-18*n-7)*a(n-1) - (n-1)*(2*n-1)*(4*n+1)*a(n-2). (End)

A335333 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*(2*k+1)*x + x^2).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 13, 1, 1, 7, 37, 63, 1, 1, 9, 73, 305, 321, 1, 1, 11, 121, 847, 2641, 1683, 1, 1, 13, 181, 1809, 10321, 23525, 8989, 1, 1, 15, 253, 3311, 28401, 129367, 213445, 48639, 1, 1, 17, 337, 5473, 63601, 458649, 1651609, 1961825, 265729, 1
Offset: 0

Views

Author

Seiichi Manyama, Jun 02 2020

Keywords

Examples

			Square array begins:
  1,    1,     1,      1,      1,       1, ...
  1,    3,     5,      7,      9,      11, ...
  1,   13,    37,     73,    121,     181, ...
  1,   63,   305,    847,   1809,    3311, ...
  1,  321,  2641,  10321,  28401,   63601, ...
  1, 1683, 23525, 129367, 458649, 1256651, ...
		

Crossrefs

Columns k=0..4 give A000012, A001850, A006442, A084768, A084769.
Rows n=0..6 give A000012, A005408, A003154(n+1), A160674, A144124, A335338, A144126.
Main diagonal gives A331656.
T(n,n-1) gives A331657.

Programs

  • Mathematica
    T[n_, k_] := LegendreP[n, 2*k + 1]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 03 2021 *)
  • PARI
    T(n, k) = pollegendre(n, 2*k+1);

Formula

T(n,k) is the coefficient of x^n in the expansion of (1 + (2*k+1)*x + k*(k+1)*x^2)^n.
T(n,k) = Sum_{j=0..n} k^j * (k+1)^(n-j) * binomial(n,j)^2.
T(n,k) = Sum_{j=0..n} k^j * binomial(n,j) * binomial(n+j,j).
n * T(n,k) = (2*k+1) * (2*n-1) * T(n-1,k) - (n-1) * T(n-2,k).
T(n,k) = P_n(2*k+1), where P_n is n-th Legendre polynomial.
From Seiichi Manyama, Aug 30 2025: (Start)
T(n,k) = (-1)^n * Sum_{j=0..n} (1/(2*(2*k+1)))^(n-2*j) * binomial(-1/2,j) * binomial(j,n-j).
T(n,k) = Sum_{j=0..floor(n/2)} (k*(k+1))^j * (2*k+1)^(n-2*j) * binomial(n,2*j) * binomial(2*j,j).
E.g.f. of column k: exp((2*k+1)*x) * BesselI(0, 2*sqrt(k*(k+1))*x). (End)

A300945 Rectangular array A(n, k) = hypergeom([-k, k + n/2 - 1], [1], -4) with row n >= 0 and k >= 0, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 25, 1, 5, 43, 425, 1, 7, 65, 661, 7025, 1, 9, 91, 965, 10515, 116625, 1, 11, 121, 1345, 15105, 171097, 1951625, 1, 13, 155, 1809, 20995, 243525, 2828101, 32903225, 1, 15, 193, 2365, 28401, 337877, 4001345, 47284251, 558265825
Offset: 0

Views

Author

Peter Luschny, Mar 16 2018

Keywords

Examples

			[0] 1,  1,  25,  425,  7025, 116625,  1951625,  32903225, ... [A299845]
[1] 1,  3,  43,  661, 10515, 171097,  2828101,  47284251, ... [A299506]
[2] 1,  5,  65,  965, 15105, 243525,  4001345,  66622085, ...
[3] 1,  7,  91, 1345, 20995, 337877,  5544709,  92234527, ... [A243946]
[4] 1,  9, 121, 1809, 28401, 458649,  7544041, 125700129, ... [A084769]
[5] 1, 11, 155, 2365, 37555, 610897, 10098997, 168894355, ... [A243947]
[6] 1, 13, 193, 3021, 48705, 800269, 13324417, 224028877, ...
		

Crossrefs

Programs

  • Mathematica
    Arow[n_, len_] := Table[Hypergeometric2F1[-k, k + n/2 - 1, 1, -4], {k, 0, len}];
    Table[Print[Arow[n, 7]], {n, 0, 6}];
    T[n_, k_] := If[k==0, 1, 4^k*Sum[(5/4)^j*Binomial[k, j]*Binomial[k - 2 + ((n - k)/2), j - 2 + ((n - k)/2)] ,{j, 0, n}]]; Flatten[Table[T[n, k],{n, 0, 8}, {k, 0, n}]] (* Detlef Meya, May 28 2024 *)

Formula

T(n, k) = if k = 0 then 1, otherwise 4^k*Sum_{j=0..n} (5/4)^j * binomial(k, j) * binomial(k - 2 + ((n - k)/2), j - 2 + ((n - k)/2)). - Detlef Meya, May 28 2024

A331656 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+k,k) * n^k.

Original entry on oeis.org

1, 3, 37, 847, 28401, 1256651, 69125869, 4548342975, 348434664769, 30463322582899, 2993348092318101, 326572612514776079, 39170287549040392369, 5123157953193993402171, 725662909285939100555101, 110662236267661479984580351, 18077209893508013563092846849
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 23 2020

Keywords

Crossrefs

Main diagonal of A335333.

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]
    Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n + 1) x + x^2], {x, 0, n}], {n, 0, 16}]
    Table[LegendreP[n, 2 n + 1], {n, 0, 16}]
    Table[Hypergeometric2F1[-n, n + 1, 1, -n], {n, 0, 16}]
  • PARI
    a(n) = {sum(k=0, n, binomial(n,k) * binomial(n+k,k) * n^k)} \\ Andrew Howroyd, Jan 23 2020

Formula

a(n) = central coefficient of (1 + (2*n + 1)*x + n*(n + 1)*x^2)^n.
a(n) = [x^n] 1 / sqrt(1 - 2*(2*n + 1)*x + x^2).
a(n) = n! * [x^n] exp((2*n + 1)*x) * BesselI(0,2*sqrt(n*(n + 1))*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k * (n + 1)^(n - k).
a(n) = P_n(2*n+1), where P_n is n-th Legendre polynomial.
a(n) ~ exp(1/2) * 4^n * n^(n - 1/2) / sqrt(Pi). - Vaclav Kotesovec, Jan 28 2020
From Seiichi Manyama, Aug 30 2025: (Start)
a(n) = (-1)^n * Sum_{k=0..n} (1/(2*(2*n+1)))^(n-2*k) * binomial(-1/2,k) * binomial(k,n-k).
a(n) = Sum_{k=0..floor(n/2)} (n*(n+1))^k * (2*n+1)^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). (End)

A331657 a(n) = Sum_{k=0..n} (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k.

Original entry on oeis.org

1, 1, 13, 305, 10321, 458649, 25289461, 1666406209, 127779121345, 11178899075537, 1098961472475901, 119937806278590321, 14389588419704763409, 1882432013890951832425, 266678501426944160023653, 40673387011956179149166849, 6644919093900517186643470081
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 23 2020

Keywords

Crossrefs

Programs

  • Magma
    [&+[(-1)^(n-k)*Binomial(n,k)*Binomial(n+k,k)*n^k:k in [0..n]]:n in [0..16]]; // Marius A. Burtea, Jan 23 2020
  • Mathematica
    Join[{1}, Table[Sum[(-1)^(n - k) Binomial[n, k] Binomial[n + k, k] n^k, {k, 0, n}], {n, 1, 16}]]
    Table[SeriesCoefficient[1/Sqrt[1 - 2 (2 n - 1) x + x^2], {x, 0, n}], {n, 0, 16}]
    Table[LegendreP[n, 2 n - 1], {n, 0, 16}]
    Table[(-1)^n Hypergeometric2F1[-n, n + 1, 1, n], {n, 0, 16}]
  • PARI
    a(n) = {sum(k=0, n, (-1)^(n - k) * binomial(n,k) * binomial(n+k,k) * n^k)} \\ Andrew Howroyd, Jan 23 2020
    

Formula

a(n) = central coefficient of (1 + (2*n - 1)*x + n*(n - 1)*x^2)^n.
a(n) = [x^n] 1 / sqrt(1 - 2*(2*n - 1)*x + x^2).
a(n) = n! * [x^n] exp((2*n - 1)*x) * BesselI(0,2*sqrt(n*(n - 1))*x).
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k * (n - 1)^(n - k).
a(n) = P_n(2*n-1), where P_n is n-th Legendre polynomial.
a(n) = (-1)^n * 2F1(-n, n + 1; 1; n).
a(n) ~ 4^n * n^(n - 1/2) / (exp(1/2) * sqrt(Pi)). - Vaclav Kotesovec, Jan 26 2020
From Seiichi Manyama, Aug 30 2025: (Start)
a(n) = (-1)^n * Sum_{k=0..n} (1/(2*(2*n-1)))^(n-2*k) * binomial(-1/2,k) * binomial(k,n-k).
a(n) = Sum_{k=0..floor(n/2)} ((n-1)*n)^k * (2*n-1)^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). (End)

A269732 Dimensions of the 4-polytridendriform operad TDendr_4.

Original entry on oeis.org

1, 9, 101, 1269, 17081, 240849, 3511741, 52515549, 801029681, 12414177369, 194922521301, 3094216933509, 49575333021801, 800645021406369, 13020241953611181, 213025792632813549, 3504075376813414241, 57914491106005287849, 961297812844696640581, 16017765308027639317269, 267831397282643166904601, 4492625888792276208945009, 75578709400747348254905501
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2016

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,9]; [n le 2 select I[n] else (9*(2*n-1)*Self(n-1)-(n-2)*Self(n-2))/(n+1): n in [1..30]]; // Vincenzo Librandi, Nov 29 2016
  • Mathematica
    Rest[CoefficientList[Series[(1 - 9*x - Sqrt[1 - 18*x + x^2])/(40*x), {x, 0, 20}], x]] (* Vaclav Kotesovec, Apr 24 2016 *)
    Table[-I*LegendreP[n, -1, 2, 9]/(2*Sqrt[5]), {n, 1, 20}] (* Vaclav Kotesovec, Apr 24 2016 *)
    RecurrenceTable[{a[1] == 1, a[2] == 9, (n+1) a[n] == 9 (2 n - 1) a[n-1] - (n - 2) a[n-2]}, a, {n, 25}] (* Vincenzo Librandi, Nov 29 2016 *)
  • PARI
    A001263(n,k) = binomial(n-1,k-1) * binomial(n, k-1)/k;
    dimTDendr(n,q) = sum(k = 0, n-1, (q+1)^k * q^(n-k-1) * A001263(n,k+1));
    my(q=4); vector(23, n, dimTDendr(n,q)) \\ Gheorghe Coserea, Apr 23 2016
    
  • PARI
    my(q=4, x='x + O('x^24)); Vec(serreverse(x/((1+q*x)*(1+(q+1)*x)))) \\ Gheorghe Coserea, Sep 30 2017
    

Formula

a(n) = P_n(4), where P_n(x) is the polynomial associated with row n of triangle A126216 in order of decreasing powers of x.
Recurrence: (n+1)*a(n) = 9*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Apr 24 2016
a(n) ~ sqrt(40 + 18*sqrt(5)) * (9 + 4*sqrt(5))^n / (40*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 24 2016
a(n) ~ phi^(6*n + 3) / (2^(5/2) * 5^(3/4) * sqrt(Pi) * n^(3/2)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 23 2017
A(x) = -serreverse(A005060(x))(-x). - Gheorghe Coserea, Sep 30 2017
O.g.f.: A(x) = (1 - sqrt(1 - 18*x + x^2) - 9*x)/(40*x). - Peter Bala, Jan 25 2018
From Peter Bala, Dec 25 2020: (Start)
a(n) = (1/(2*m*(m+1))) * Integral_{x = 1..2*m+1} Legendre_P(n,x) dx at m = 4.
a(n) = (1/(2*n+1)) * (1/(2*m*(m+1))) * ( Legendre_P(n+1,2*m+1) - Legendre_P(n-1,2*m+1) ) at m = 4. (End)

Extensions

More terms from Gheorghe Coserea, Apr 23 2016
Showing 1-10 of 12 results. Next