A084769
a(n) = P_n(9), where P_n is n-th Legendre polynomial; also, a(n) = central coefficient of (1 + 9*x + 20*x^2)^n.
Original entry on oeis.org
1, 9, 121, 1809, 28401, 458649, 7544041, 125700129, 2114588641, 35836273449, 610897146201, 10463745263409, 179939616743121, 3104680678772409, 53721299280288201, 931852905510160449, 16198821321758152641
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Vaclav Kotesovec, Asymptotic of a sums of powers of binomial coefficients * x^k, 2012.
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
[Evaluate(LegendrePolynomial(n), 9) : n in [0..40]]; // G. C. Greubel, May 17 2023
-
Table[SeriesCoefficient[1/Sqrt[1-18*x+x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
LegendreP[Range[0, 40], 9] (* G. C. Greubel, May 17 2023 *)
a[n_] := 4^n*Sum[(5/4)^k*Binomial[n, k]^2, {k, 0, n}];
Table[a[n], {n, 0, 16}] (* Detlef Meya, May 22 2024 *)
-
for(n=0,30,print1(subst(pollegendre(n),x,9)","))
-
{a(n)=sum(k=0, n, binomial(n, k)^2*4^k*5^(n-k))} \\ Paul D. Hanna, Sep 29 2012
-
[gen_legendre_P(n,0,9) for n in range(41)] # G. C. Greubel, May 17 2023
A243949
Squares of the central Delannoy numbers: a(n) = A001850(n)^2.
Original entry on oeis.org
1, 9, 169, 3969, 103041, 2832489, 80802121, 2365752321, 70611901441, 2139090528969, 65568745087209, 2029206892664961, 63300531617048961, 1987912809986437161, 62787371136571152009, 1992942254830520803329, 63531842302018973818881, 2033004661359005674887561
Offset: 0
G.f.: A(x) = 1 + 9*x + 169*x^2 + 3969*x^3 + 103041*x^4 + 2832489*x^5 +...
- Seiichi Manyama, Table of n, a(n) for n = 0..500
- A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
- W. Zudilin, A generating function of the squares of Legendre polynomials, arXiv:1210.2493v2 [math.CA], 2012.
-
[Evaluate(LegendrePolynomial(n), 3)^2 : n in [0..40]]; // G. C. Greubel, May 17 2023
-
Table[Sum[2^k *Binomial[2*k, k]^2 *Binomial[n+k, n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Aug 18 2014 *)
a[n_]:= HypergeometricPFQ[{1/2, -n, n+1}, {1, 1}, -8];
Table[a[n], {n, 0, 17}] (* Peter Luschny, Mar 14 2018 *)
LegendreP[Range[0, 30], 3]^2 (* G. C. Greubel, May 17 2023 *)
-
{a(n) = sum(k=0, n, 2^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
for(n=0, 20, print1(a(n), ", "))
-
{a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 36*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
-
from math import comb
def A243949(n): return sum(comb(n,k)*comb(n+k,k) for k in range(n+1))**2 # Chai Wah Wu, Mar 23 2023
-
[gen_legendre_P(n,0,3)^2 for n in range(41)] # G. C. Greubel, May 17 2023
Original entry on oeis.org
1, 25, 1369, 93025, 6974881, 553425625, 45558768025, 3848757330625, 331434586569025, 28966516730025625, 2561512789823546329, 228690489716580520225, 20579914168308199841761, 1864413002713001259355225, 169871744046114667846619929, 15554069096581207471331850625
Offset: 0
G.f.: A(x) = 1 + 9*x + 169*x^2 + 3969*x^3 + 103041*x^4 + 2832489*x^5 +...
-
[Evaluate(LegendrePolynomial(n), 5)^2 : n in [0..40]]; // G. C. Greubel, May 17 2023
-
Table[Sum[6^k * Binomial[2*k, k]^2 * Binomial[n+k, n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 28 2019 *)
LegendreP[Range[0,40], 5]^2 (* G. C. Greubel, May 17 2023 *)
-
{a(n) = sum(k=0, n, 6^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 2^k * binomial(2*k, k) * binomial(n+k, n-k) )^2}
for(n=0, 20, print1(a(n), ", "))
-
/* Using AGM: */
{a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 10^2*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 30 2014
-
[gen_legendre_P(n,0,5)^2 for n in range(41)] # G. C. Greubel, May 17 2023
Original entry on oeis.org
1, 49, 5329, 717409, 106523041, 16735820689, 2727812288881, 456250924320961, 77788137919752001, 13459803510972477169, 2356471368269511061009, 416518496068852312607521, 74207592486779379593752801, 13309569813247406938272432721, 2400816685486139045360488325809
Offset: 0
G.f.: A(x) = 1 + 49*x + 5329*x^2 + 717409*x^3 + 106523041*x^4 +...
-
[Evaluate(LegendrePolynomial(n),7)^2 : n in [0..40]]; // G. C. Greubel, May 17 2023
-
Table[Sum[12^k * Binomial[2*k, k]^2 * Binomial[n+k, n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 28 2019 *)
CoefficientList[Series[2*EllipticK[1 - (1-x)^2/(1 - 194*x + x^2)] / (Pi*Sqrt[1 - 194*x + x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 28 2019 *)
LegendreP[Range[0, 40], 7]^2 (* G. C. Greubel, May 17 2023 *)
-
{a(n) = sum(k=0, n, 12^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 3^k * binomial(2*k, k) * binomial(n+k, n-k) )^2}
for(n=0, 20, print1(a(n), ", "))
-
/* Using AGM: */
{a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 14^2*x +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 30 2014
-
[gen_legendre_P(n,0,7)^2 for n in range(41)] # G. C. Greubel, May 17 2023
Showing 1-4 of 4 results.
Comments