cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A084768 a(n) = P_n(7), where P_n is n-th Legendre polynomial; also, a(n) = central coefficient of (1 + 7*x + 12*x^2)^n.

Original entry on oeis.org

1, 7, 73, 847, 10321, 129367, 1651609, 21360031, 278905249, 3668760487, 48543499753, 645382441711, 8614382884849, 115367108888311, 1549456900170553, 20861640747345727, 281483386791966529, 3805228005705102151, 51527535767904810889, 698796718936034430607
Offset: 0

Views

Author

Paul D. Hanna, Jun 03 2003

Keywords

Comments

More generally, given fixed parameters b and c, we have the identities:
(1) a(n) = Sum_{k=0..n} binomial(n,k)^2 * b^k * c^(n-k);
(2) a(n) = [x^n] (1 + (b+c)*x + b*c*x^2)^n;
(3) g.f.: 1/sqrt(1 - 2*(b+c)*x + (b-c)^2*x^2);
(4) Sum_{n>=1} a(n)*x^n/n = log(G(x)) where G(x) = 1 + (b+c)*x*G(x) + b*c*x^2*G(x)^2.
Number of directed 2-D walks of length 2n starting at (0,0) and ending on the X-axis using steps NE, SE, NE, SW and avoiding NE followed by SE. - David Scambler, Jun 24 2013

Crossrefs

Column k=3 of A335333.
Sequences of the form LegendreP(n, 2*m+1): A000012 (m=0), A001850 (m=1), A006442 (m=2), this sequence (m=3), A084769 (m=4).
Cf. A084774, A243944 (a(n)^2).

Programs

  • Magma
    [Evaluate(LegendrePolynomial(n),7): n in [0..40]]; // G. C. Greubel, May 17 2023
    
  • Mathematica
    Table[LegendreP[n, 7], {n, 0, 20}] (* Vaclav Kotesovec, Jul 31 2013 *)
  • PARI
    for(n=0,30,print1(subst(pollegendre(n),x,7)","))
    
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)^2*3^k*4^(n-k))} \\ Paul D. Hanna, Sep 28 2012
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From a(n)^2 = A243944(n) (Paul D. Hanna, Aug 18 2014): */
    {a(n) = sqrtint( sum(k=0, n, 12^k * binomial(2*k, k)^2 * binomial(n+k, n-k) ) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • SageMath
    [gen_legendre_P(n,0,7) for n in range(41)] # G. C. Greubel, May 17 2023

Formula

G.f.: 1/sqrt(1 - 14*x + x^2).
Also a(n) = (n+1)-th term of the binomial transform of 1/(1-3x)^(n+1).
a(n) = Sum_{k=0..n} 3^k*C(n,k)*C(n+k,k). - Benoit Cloitre, Apr 13 2004
E.g.f.: exp(7*x) * Bessel_I(0, 2*sqrt(12)*x). - Paul Barry, May 25 2005
D-finite with recurrence: n*a(n) + 7*(1-2*n)*a(n-1) + (n-1)*a(n-2) = 0. - R. J. Mathar, Sep 27 2012
a(n) = Sum_{k=0..n} C(n,k)^2 * 3^k * 4^(n-k). - Paul D. Hanna, Sep 28 2012
a(n) ~ (7+4*sqrt(3))^(n+1/2)/(2*3^(1/4)*sqrt(2*Pi*n)). - Vaclav Kotesovec, Jul 31 2013
a(n) = hypergeom([-n, n+1], [1], -3). - Peter Luschny, May 23 2014
a(n)^2 = Sum_{k=0..n} 12^k * C(2*k, k)^2 * C(n+k, n-k) = A243944(n). - Paul D. Hanna, Aug 18 2014
From Peter Bala, Apr 17 2024: (Start)
a(n) = (1/4)*(1/3)^n*Sum_{k >= n} binomial(k, n)^2*(3/4)^k.
a(n) = (1/4)^(n+1)*hypergeom([n+1, n+1], [1], 3/4).
a(n) = [x^n] ((1 + x)*(4 + 3*x))^n = [x^n] ((1 + 3*x)*(1 + 4*x))^n.
a(n) = (3^n)*hypergeom([-n, -n], [1], 4/3) = (4^n)*hypergeom([-n, -n], [1], 3/4).
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
a(n) = (-1)^n * Sum_{k = 0..n} (-4)^k*binomial(2*k, k)*binomial(n+k, n-k).
G.f: Sum_{n >= 0} (3^n)*binomial(2*n, n)*x^n/(1 - x)^(2*n+1) = 1 + 7*x + 73*x^2 + 847^x^3 + .... (End)
a(n) = (-1)^n * Sum_{k=0..n} (1/14)^(n-2*k) * binomial(-1/2,k) * binomial(k,n-k). - Seiichi Manyama, Aug 28 2025
a(n) = Sum_{k=0..floor(n/2)} 12^k * 7^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, Aug 30 2025

A243949 Squares of the central Delannoy numbers: a(n) = A001850(n)^2.

Original entry on oeis.org

1, 9, 169, 3969, 103041, 2832489, 80802121, 2365752321, 70611901441, 2139090528969, 65568745087209, 2029206892664961, 63300531617048961, 1987912809986437161, 62787371136571152009, 1992942254830520803329, 63531842302018973818881, 2033004661359005674887561
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2014

Keywords

Comments

In general, we have the binomial identity:
if b(n) = Sum_{k=0..n} t^k * C(2*k, k) * C(n+k, n-k), then b(n)^2 = Sum_{k=0..n} (t^2+t)^k * C(2*k, k)^2 * C(n+k, n-k), where the g.f. of b(n) is 1/sqrt(1 - (4*t+2)*x + x^2), and the g.f. of b(n)^2 is 1 / AGM(1-x, sqrt((1+x)^2 - (4*t+2)^2*x)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
Note that the g.f. of A001850 is 1/sqrt(1 - 6*x + x^2).
Limit_{n -> oo} a(n+1)/a(n) = (3 + 2*sqrt(2))^2 = 17 + 12*sqrt(2).
From Gheorghe Coserea, Jul 05 2016: (Start)
Diagonal of the rational function 1/(1 - x - y - z - x*y + x*z - y*z - x*y*z).
Annihilating differential operator: x*(x-1)*(x+1)*(x^2-34*x+1)*Dx^2 + (3*x^4-66*x^3-70*x^2+70*x-1)*Dx + x^3-7*x^2-35*x+9.
(End).
The sequence b(n) mentioned above is the sequence of shifted Legendre polynomials P(n,2*t + 1) (see A063007). See Zudilin for a g.f. for the sequence b(n)^2. - Peter Bala, Mar 02 2017

Examples

			G.f.: A(x) = 1 + 9*x + 169*x^2 + 3969*x^3 + 103041*x^4 + 2832489*x^5 +...
		

Crossrefs

Sequences of the form LegendreP(n, 2*m+1)^2: A000012 (m=0), this sequence (m=1), A243943 (m=2), A243944 (m=3), A243007 (m=4).
Related to diagonal of rational functions: A268545 - A268555.

Programs

  • Magma
    [Evaluate(LegendrePolynomial(n), 3)^2 : n in [0..40]]; // G. C. Greubel, May 17 2023
    
  • Mathematica
    Table[Sum[2^k *Binomial[2*k, k]^2 *Binomial[n+k, n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Aug 18 2014 *)
    a[n_]:= HypergeometricPFQ[{1/2, -n, n+1}, {1, 1}, -8];
    Table[a[n], {n, 0, 17}] (* Peter Luschny, Mar 14 2018 *)
    LegendreP[Range[0, 30], 3]^2 (* G. C. Greubel, May 17 2023 *)
  • PARI
    {a(n) = sum(k=0, n, 2^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 36*x +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • Python
    from math import comb
    def A243949(n): return sum(comb(n,k)*comb(n+k,k) for k in range(n+1))**2 # Chai Wah Wu, Mar 23 2023
    
  • SageMath
    [gen_legendre_P(n,0,3)^2 for n in range(41)] # G. C. Greubel, May 17 2023

Formula

G.f.: 1 / AGM(1-x, sqrt(1-34*x+x^2)). - Paul D. Hanna, Aug 30 2014
a(n) = Sum_{k=0..n} 2^k * C(2*k, k)^2 * C(n+k, n-k).
a(n)^(1/2) = Sum_{k=0..n} C(2*k, k) * C(n+k, n-k).
Recurrence: n^2*(2*n-3)*a(n) = (2*n-1)*(35*n^2 - 70*n + 26)*a(n-1) - (2*n-3)*(35*n^2 - 70*n + 26)*a(n-2) + (n-2)^2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Aug 18 2014
a(n) ~ (4 + 3*sqrt(2)) * (3 + 2*sqrt(2))^(2*n) / (8*Pi*n). - Vaclav Kotesovec, Aug 18 2014
From Gheorghe Coserea, Jul 05 2016: (Start)
G.f.: hypergeom([1/12, 5/12],[1],27648*x^4*(x^2-34*x+1)*(x-1)^2/(1-36*x+134*x^2-36*x^3+x^4)^3)/(1-36*x+134*x^2-36*x^3+x^4)^(1/4).
0 = x*(x-1)*(x+1)*(x^2-34*x+1)*y'' + (3*x^4-66*x^3-70*x^2+70*x-1)*y' + (x^3-7*x^2-35*x+9)*y, where y is g.f.
(End)
a(n) = Sum_{k = 0..n} 4^k*binomial(n+k,2*k)^2*binomial(2*k,k). - Peter Bala, Mar 02 2017
a(n) = hypergeom([1/2, -n, n + 1], [1, 1], -8). - Peter Luschny, Mar 14 2018
G.f.: Sum_{n >= 0} (2^n)*binomial(2*n,n)^2 *x^n/(1-x)^(2*n+1). - Peter Bala, Feb 07 2022

A243007 a(n) = A084769(n)^2.

Original entry on oeis.org

1, 81, 14641, 3272481, 806616801, 210358905201, 56912554609681, 15800522430616641, 4471485120646226881, 1284238494711502355601, 373195323236525968732401, 109489964937514282794301281, 32378265673661271315300820641, 9639042117142706280223219663281
Offset: 0

Views

Author

Paul D. Hanna, Aug 18 2014

Keywords

Comments

In general, we have the binomial identity:
if b(n) = Sum_{k=0..n} t^k * C(2*k, k) * C(n+k, n-k),
then b(n)^2 = Sum_{k=0..n} (t^2+t)^k * C(2*k, k)^2 * C(n+k, n-k),
where the g.f. of b(n) is 1/sqrt(1 - (4*t+2)*x + x^2),
and the g.f. of b(n)^2 is 1 / AGM(1-x, sqrt((1+x)^2 - (4*t+2)^2*x)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
Note that the g.f. of A084769 is 1/sqrt(1 - 18*x + x^2).
Limit_{n -> oo} a(n+1)/a(n) = (9 + 4*sqrt(5))^2 = 161 + 72*sqrt(5).

Examples

			G.f.: A(x) = 1 + 81*x + 14641*x^2 + 3272481*x^3 + 806616801*x^4 +...
		

Crossrefs

Sequences of the form LegendreP(n, 2*m+1)^2: A000012 (m=0), A243949 (m=1), A243943 (m=2), A243944 (m=3), this sequence (m=4).
Cf. A084769.

Programs

  • Magma
    [Evaluate(LegendrePolynomial(n),9)^2 : n in [0..30]]; // G. C. Greubel, May 17 2023
    
  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1 -18x +x^2], {x,0,n}], {n,0,20}]^2 (* Vincenzo Librandi, Feb 14 2018 *)
    LegendreP[Range[0,30], 9]^2 (* G. C. Greubel, May 17 2023 *)
  • PARI
    {a(n) = sum(k=0, n, 20^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 4^k * binomial(2*k, k) * binomial(n+k, n-k) )^2}
    for(n=0, 20, print1(a(n), ", "))
    {a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 18^2*x +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 30 2014
    
  • SageMath
    [gen_legendre_P(n,0,9)^2 for n in range(41)] # G. C. Greubel, May 17 2023

Formula

G.f.: 1 / AGM(1-x, sqrt(1- 322*x + x^2)). - Paul D. Hanna, Aug 30 2014
a(n) = Sum_{k=0..n} 20^k * C(2*k, k)^2 * C(n+k, n-k).
a(n)^(1/2) = Sum_{k=0..n} 4^k * C(2*k, k) * C(n+k, n-k).
a(n) ~ (2 + sqrt(5))^(4*n+2) / (8*sqrt(5)*Pi*n). - Vaclav Kotesovec, Sep 28 2019

A243943 a(n) = A006442(n)^2.

Original entry on oeis.org

1, 25, 1369, 93025, 6974881, 553425625, 45558768025, 3848757330625, 331434586569025, 28966516730025625, 2561512789823546329, 228690489716580520225, 20579914168308199841761, 1864413002713001259355225, 169871744046114667846619929, 15554069096581207471331850625
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2014

Keywords

Comments

In general, we have the binomial identity:
if b(n) = Sum_{k=0..n} t^k * C(2*k, k) * C(n+k, n-k),
then b(n)^2 = Sum_{k=0..n} (t^2+t)^k * C(2*k, k)^2 * C(n+k, n-k),
where the g.f. of b(n) is 1/sqrt(1 - (4*t+2)*x + x^2),
and the g.f. of b(n)^2 is 1 / AGM(1-x, sqrt((1+x)^2 - (4*t+2)^2*x)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
Note that the g.f. of A006442 is 1/sqrt(1 - 10*x + x^2).
Limit_{n -> oo} a(n+1)/a(n) = (5 + 2*sqrt(6))^2 = 49 + 20*sqrt(6).

Examples

			G.f.: A(x) = 1 + 9*x + 169*x^2 + 3969*x^3 + 103041*x^4 + 2832489*x^5 +...
		

Crossrefs

Sequences of the form LegendreP(n, 2*m+1)^2: A000012 (m=0), A243949 (m=1), this sequence (m=2), A243944 (m=3), A243007 (m=4).
Cf. A006442.

Programs

  • Magma
    [Evaluate(LegendrePolynomial(n), 5)^2 : n in [0..40]]; // G. C. Greubel, May 17 2023
    
  • Mathematica
    Table[Sum[6^k * Binomial[2*k, k]^2 * Binomial[n+k, n-k], {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Sep 28 2019 *)
    LegendreP[Range[0,40], 5]^2 (* G. C. Greubel, May 17 2023 *)
  • PARI
    {a(n) = sum(k=0, n, 6^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 2^k * binomial(2*k, k) * binomial(n+k, n-k) )^2}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* Using AGM: */
    {a(n)=polcoeff( 1 / agm(1-x, sqrt((1+x)^2 - 10^2*x +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 30 2014
    
  • SageMath
    [gen_legendre_P(n,0,5)^2 for n in range(41)] # G. C. Greubel, May 17 2023

Formula

G.f.: 1 / AGM(1-x, sqrt(1-98*x+x^2)). - Paul D. Hanna, Aug 30 2014
a(n) = Sum_{k=0..n} 6^k * C(2*k, k)^2 * C(n+k, n-k).
a(n)^(1/2) = Sum_{k=0..n} 2^k * C(2*k, k) * C(n+k, n-k).
a(n) ~ (5+2*sqrt(6))^(2*n+1) / (4*Pi*sqrt(6)*n). - Vaclav Kotesovec, Sep 28 2019
Showing 1-4 of 4 results.