cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A245926 Expansion of g.f. sqrt( (1-x + sqrt(1-14*x+x^2)) / (2*(1-14*x+x^2)) ).

Original entry on oeis.org

1, 5, 51, 587, 7123, 89055, 1135005, 14660805, 191253843, 2513963567, 33244446601, 441772827105, 5894323986301, 78912561223553, 1059543126891027, 14261959492731387, 192392702881384275, 2600355510685245087, 35206018016510388345, 477377227987055971905
Offset: 0

Views

Author

Paul D. Hanna, Aug 15 2014

Keywords

Comments

Square each term to form a bisection of A245925.
Limit a(n+1)/a(n) = 7 + 4*sqrt(3).

Examples

			G.f.: A(x) = 1 + 5*x + 51*x^2 + 587*x^3 + 7123*x^4 + 89055*x^5 +...
where
A(x)^2 = (1-x + sqrt(1-14*x+x^2)) / (2*(1-14*x+x^2)).
Explicitly,
A(x)^2 = 1 + 10*x + 127*x^2 + 1684*x^3 + 22717*x^4 + 309214*x^5 + 4231675*x^6 + 58117672*x^7 + 800173945*x^8 +...+ A245923(n)*x^n +...
		

Crossrefs

Column k=3 of A337389.

Programs

  • Maple
    A245926 := n -> sqrt(add(binomial(4*n-2*k, 2*n-k)*binomial(4*n-k, k)^2, k=0..2*n)); seq(A245926(n), n=0..20); # Peter Luschny, Aug 17 2014
  • Mathematica
    CoefficientList[Series[Sqrt[(1 - x + Sqrt[1 - 14*x + x^2])/(2*(1 - 14*x + x^2))], {x,0,50}], x] (* G. C. Greubel, Jan 29 2017 *)
    a[n_] := (-1)^n Hypergeometric2F1[-n, n + 1/2, 1, 4];
    Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 16 2018 *)
  • PARI
    /* From definition: */
    {a(n)=polcoeff( sqrt( (1-x + sqrt(1-14*x+x^2 +x*O(x^n))) / (2*(1-14*x+x^2 +x*O(x^n))) ), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From formula for a(n)^2: */
    {a(n)=sqrtint(sum(k=0, 2*n, sum(j=0, 4*n-2*k, (-1)^(j+k)*binomial(4*n-k,j+k)^2*binomial(j+k, k)^2)))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From formula for a(n)^2: */
    {a(n) = sqrtint( sum(k=0, 2*n, binomial(2*k, k)^2*binomial(2*n+k, 2*n-k)*(-1)^k) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n)^2 = Sum_{k=0..2*n} Sum_{j=0..4*n-2*k} (-1)^(j+k) * C(4*n-k,j+k)^2 * C(j+k,k)^2.
a(n) ~ (3*sqrt(3)-5) * (7+4*sqrt(3))^(n+1) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 16 2014
a(n)^2 = C(4*n,2*n)*hyper4F3([-2*n,-2*n,-2*n,-2*n+1/2],[1,-4*n,-4*n],4). - Peter Luschny, Aug 17 2014
a(n)^2 = Sum_{k=0..2*n} binomial(4*n-2*k, 2*n-k)*binomial(4*n-k, k)^2. - Peter Luschny, Aug 17 2014
a(n)^2 = Sum_{k=0..2*n} (-1)^k * C(2*k, k)^2 * C(2*n+k, 2*n-k). - Paul D. Hanna, Aug 17 2014
From Peter Bala, Mar 14 2018: (Start)
a(n) = (-1)^n*P(2*n,sqrt(-3)), where P(n,x) denotes the n-th Legendre polynomial. See A008316.
a(n) = (1/C(2*n,n))*Sum_{k = 0..n} (-1)^(n+k)*C(n,k)*C(n+k,k)* C(2*n+2*k,n+k) = Sum_{k = 0..n} (-1)^(n+k)*C(2*k,k)*C(n,k) *C(2*n+2*k,2*n)/C(n+k,n). In general, P(2*n,sqrt(1+4*x)) = (1/C(2*n,n))*Sum_{k = 0..n} C(n,k)*C(n+k,k)*C(2*n+2*k,n+k) *x^k.
a(n) = Sum_{k = 0..2*n} C(2*n,k)^2 * u^(n-k), where u = (1 - sqrt(-3))/2 is a primitive sixth root of unity.
a(n) = (-1)^n*Sum_{k = 0..2*n} C(2*n,k)*C(2*n+k,k)*u^(2*k).
(End)
a(n) = (-1)^n*hypergeom([-n, n + 1/2], [1], 4). - Peter Luschny, Mar 16 2018
a(0) = 1, a(1) = 5 and n * (2*n-1) * (4*n-5) * a(n) = (4*n-3) * (28*n^2-42*n+9) * a(n-1) - (n-1) * (2*n-3) * (4*n-1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 28 2020
From Peter Bala, May 03 2022: (Start)
Conjecture: a(n) = [x^n] ( (1 + x + x^2)*(1 + x)^2/(1 - x)^2 )^n. Equivalently, a(n) = Sum_{k = 0..n} Sum_{i = 0..k} Sum_{j = 0..n-k-i} C(n, k)*C(k, i)*C(2*n, j)*C(3*n-k-i-j-1, n-k-i-j).
If the conjecture is true then the Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k. Calculation suggests that the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(2*k)) hold for primes p >= 5 and positive integers n and k. (End)

A243947 Expansion of g.f. sqrt( (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)) ).

Original entry on oeis.org

1, 11, 155, 2365, 37555, 610897, 10098997, 168894355, 2849270515, 48395044705, 826479148001, 14177519463191, 244109912494525, 4216385987238575, 73024851218517275, 1267712063327871245, 22052786911315216595, 384321597582115655825, 6708530714274563938225
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2014

Keywords

Comments

Multiply the square of each term by 5 to form a bisection of A243945.
Limit_{n->oo} a(n+1)/a(n) = 9 + 4*sqrt(5).

Examples

			G.f.: A(x) = 1 + 11*x + 155*x^2 + 2365*x^3 + 37555*x^4 + 610897*x^5 + ...
where
A(x)^2 = (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)).
		

Crossrefs

Programs

  • Maple
    seq(add(1/2*binomial(2*k+1,k)*binomial(n,k)*binomial(2*n+2*k+2,2*n+1)/binomial(n+k+1,n), k = 0..n), n = 0..20); # Peter Bala, Mar 15 2018
  • Mathematica
    CoefficientList[Series[Sqrt[((1+x-Sqrt[1-18x+x^2]))/(10x(1-18x+x^2))],{x,0,20}],x] (* Harvey P. Dale, Jul 31 2016 *)
    a[n_] := Hypergeometric2F1[-n, n + 3/2, 1, -4];
    Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 16 2018 *)
  • PARI
    /* From definition: */
    {a(n)=polcoeff( sqrt( (1+x - sqrt(1-18*x+x^2 +x^2*O(x^n))) / (10*x*(1-18*x+x^2 +x*O(x^n))) ), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From a(n) = sqrt( A243945(2*n+1)/5 ): */
    {a(n)=sqrtint( (1/5)*sum(k=0, 2*n+1, binomial(2*k, k)^2*binomial(2*n+k+1, 2*n-k+1)) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • Python
    from math import comb
    def A243947(n): return sum(5**(n-k)*comb(m:=k<<1,k)*comb((n<<1)+1,m) for k in range(n+1)) # Chai Wah Wu, Mar 23 2023

Formula

a(n)^2 = (1/5) * Sum_{k=0..2*n+1} C(2*k, k)^2 * C(2*n+k+1, 2*n-k+1).
a(n) ~ (9+4*sqrt(5))^(n+1) / (2*5^(1/4)*sqrt(2*Pi*n) * sqrt(5+2*sqrt(5))). - Vaclav Kotesovec, Aug 18 2014. Equivalently, a(n) ~ phi^(6*n + 9/2) / (2^(3/2) * sqrt(5*Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
From Peter Bala, Mar 15 2018: (Start)
a(n) = (1/sqrt(5))*P(2*n+1,sqrt(5)), where P(n,x) denotes the n-th Legendre polynomial. See A008316.
a(n) = Sum_{k = 0..n} (1/2)*C(2*k+1,k)*C(n,k)*C(2*n+2*k+2,2*n+1)/C(n+k+1,n). In general, (1/sqrt(1 + 4*x))*P(2*n+1,sqrt(1+4*x)) = (1/(2*C(2*n+1,n))) * Sum_{k = 0..n} C(n,k)*C(n+k+1,k)*C(2*n+2*k+2,n+k+1)*x^k.
a(n) = (1/sqrt(5))*Sum_{k = 0..2*n+1} C(2*n+1,k)^2 * phi^(2*n-2*k+1), where phi = (sqrt(5) + 1)/2.
a(n) = (1/sqrt(5))*Sum_{k = 0..2*n+1} C(2*n+1,k)*C(2*n+1+k,k) * Phi^k, where Phi = (sqrt(5) - 1)/2. (End)
a(n) = hypergeom([-n, n + 3/2], [1], -4). - Peter Luschny, Mar 16 2018
From Peter Bala, Mar 17 2018: (Start)
a(n) = Sum_{k = 0..n} C(2*n+1,2*k)*C(2*k,k)*5^(n-k).
D-finite with recurrence: n*(4*n-3)*(2*n+1)*a(n) = (4*n-1)*(36*n^2-18*n-7)*a(n-1) - (n-1)*(2*n-1)*(4*n+1)*a(n-2). (End)

A337389 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of sqrt((1+(k-4)*x+sqrt(1-2*(k+4)*x+((k-4)*x)^2)) / (2 * (1-2*(k+4)*x+((k-4)*x)^2))).

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 19, 20, 1, 5, 34, 141, 70, 1, 6, 51, 328, 1107, 252, 1, 7, 70, 587, 3334, 8953, 924, 1, 8, 91, 924, 7123, 34904, 73789, 3432, 1, 9, 114, 1345, 12870, 89055, 372436, 616227, 12870, 1, 10, 139, 1856, 20995, 184756, 1135005, 4027216, 5196627, 48620
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2020

Keywords

Examples

			Square array begins:
    1,    1,     1,     1,      1,      1, ...
    2,    3,     4,     5,      6,      7, ...
    6,   19,    34,    51,     70,     91, ...
   20,  141,   328,   587,    924,   1345, ...
   70, 1107,  3334,  7123,  12870,  20995, ...
  252, 8953, 34904, 89055, 184756, 337877, ...
		

Crossrefs

Columns k=0..5 give A000984, A082758, A337390, A245926, A001448, A243946.
Main diagonal gives A337388.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == 0, Boole[n == j], k^(n - j)] * Binomial[2*j, j] * Binomial[2*n, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 25 2020 *)
  • PARI
    {T(n, k) = sum(j=0, n, k^(n-j)*binomial(2*j, j)*binomial(2*n, 2*j))}

Formula

T(n,k) = Sum_{j=0..n} k^(n-j) * binomial(2*j,j) * binomial(2*n,2*j).
T(0,k) = 1, T(1,k) = k+2 and n * (2*n-1) * (4*n-5) * T(n,k) = (4*n-3) * (4*(k+4)*n^2-6*(k+4)*n+k+6) * T(n-1,k) - (k-4)^2 * (n-1) * (2*n-3) * (4*n-1) * T(n-2,k) for n > 1. - Seiichi Manyama, Aug 28 2020
For fixed k > 0, T(n,k) ~ (2 + sqrt(k))^(2*n + 1/2) / sqrt(8*Pi*n). - Vaclav Kotesovec, Aug 31 2020
Conjecture: the k-th column entries, k >= 0, are given by [x^n] ( (1 + (k-2)*x + x^2)*(1 + x)^2/(1 - x)^2 )^n. This is true for k = 0 and k = 4. - Peter Bala, May 03 2022

A243945 a(n) = Sum_{k=0..n} C(2*k, k)^2 * C(n+k, n-k).

Original entry on oeis.org

1, 5, 49, 605, 8281, 120125, 1809025, 27966125, 440790025, 7051890125, 114160867129, 1865975723045, 30743797894681, 509948702030045, 8507207970913729, 142626515754330125, 2401552098016698025, 40591712338241826125, 688413807606268692025, 11710401759994742685125
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2014

Keywords

Comments

The g.f.s formed from a(2*n)^(1/2) and (a(2*n+1)/5)^(1/2) are:
A243946: sqrt( (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)) );
A243947: sqrt( (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)) ).
Lim_{n->infinity} a(n+1)/a(n) = 9 + 4*sqrt(5).
Diagonal of rational function 1/(1 - (x + y + x*z + y*z + x*y*z)). - Gheorghe Coserea, Aug 24 2018

Examples

			G.f.: A(x) = 1 + 5*x + 49*x^2 + 605*x^3 + 8281*x^4 + 120125*x^5 + ... where
A(x) = 1/(1-x) + 2^2*x/(1-x)^3 + 6^2*x^2/(1-x)^5 + 20^2*x^3/(1-x)^7 + 70^2*x^4/(1-x)^9 + 252^2*x^5/(1-x)^11 + 924^2*x^6/(1-x)^13 + ... + A000984(n)^2*x^n/(1-x)^(2*n+1) + ...
		

Crossrefs

Programs

  • Magma
    &cat[ [&+[ Binomial(2*k, k)^2 * Binomial(n+k, n-k): k in [0..n]]]: n in [0..30]]; // Vincenzo Librandi, Aug 25 2018
  • Mathematica
    Table[Sum[Binomial[2*k, k]^2 * Binomial[n + k, n - k],{k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 18 2014 *)
    a[n_] := HypergeometricPFQ[{1/2, -n, n + 1}, {1, 1}, -4];
    Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 14 2018 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, k)^2*binomial(n+k, n-k))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1); A=sum(m=0, n, binomial(2*m, m)^2 * x^m/(1-x +x*O(x^n))^(2*m+1)); polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff( 1 / agm(1-x, sqrt((1-x)^2 - 16*x +x*O(x^n))), n)}
    for(n=0,20,print1(a(n),", "))
    

Formula

G.f.: Sum_{n>=0} binomial(2*n, n)^2 * x^n / (1-x)^(2*n+1).
G.f.: 1 / AGM(1-x, sqrt(1-18*x+x^2)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
a(2*n) = A243946(n)^2.
a(2*n+1) = 5 * A243947(n)^2.
Recurrence: n^2*(2*n-3)*a(n) = (2*n-1)*(19*n^2 - 38*n + 14)*a(n-1) - (2*n-3)*(19*n^2 - 38*n + 14)*a(n-2) + (n-2)^2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Aug 18 2014
a(n) ~ (2+sqrt(5)) * (9+4*sqrt(5))^n / (4*Pi*n). - Vaclav Kotesovec, Aug 18 2014. Equivalently, a(n) ~ phi^(6*n + 3) / (4*Pi*n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
a(n) = hypergeom([1/2, -n, n + 1], [1, 1], -4). - Peter Luschny, Mar 14 2018
G.f. y=A(x) satisfies: 0 = x*(x^2 - 1)*(x^2 - 18*x + 1)*y'' + (3*x^4 - 34*x^3 - 38*x^2 + 38*x - 1)*y' + (x^3 - 3*x^2 - 19*x + 5)*y. - Gheorghe Coserea, Aug 29 2018
From Peter Bala, Feb 07 2022: (Start)
a(n) = P(n,sqrt(5))^2, where P(n,x) denotes the n-th Legendre polynomial.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) hold for all primes p and positive integers n and k. (End)

A300945 Rectangular array A(n, k) = hypergeom([-k, k + n/2 - 1], [1], -4) with row n >= 0 and k >= 0, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 25, 1, 5, 43, 425, 1, 7, 65, 661, 7025, 1, 9, 91, 965, 10515, 116625, 1, 11, 121, 1345, 15105, 171097, 1951625, 1, 13, 155, 1809, 20995, 243525, 2828101, 32903225, 1, 15, 193, 2365, 28401, 337877, 4001345, 47284251, 558265825
Offset: 0

Views

Author

Peter Luschny, Mar 16 2018

Keywords

Examples

			[0] 1,  1,  25,  425,  7025, 116625,  1951625,  32903225, ... [A299845]
[1] 1,  3,  43,  661, 10515, 171097,  2828101,  47284251, ... [A299506]
[2] 1,  5,  65,  965, 15105, 243525,  4001345,  66622085, ...
[3] 1,  7,  91, 1345, 20995, 337877,  5544709,  92234527, ... [A243946]
[4] 1,  9, 121, 1809, 28401, 458649,  7544041, 125700129, ... [A084769]
[5] 1, 11, 155, 2365, 37555, 610897, 10098997, 168894355, ... [A243947]
[6] 1, 13, 193, 3021, 48705, 800269, 13324417, 224028877, ...
		

Crossrefs

Programs

  • Mathematica
    Arow[n_, len_] := Table[Hypergeometric2F1[-k, k + n/2 - 1, 1, -4], {k, 0, len}];
    Table[Print[Arow[n, 7]], {n, 0, 6}];
    T[n_, k_] := If[k==0, 1, 4^k*Sum[(5/4)^j*Binomial[k, j]*Binomial[k - 2 + ((n - k)/2), j - 2 + ((n - k)/2)] ,{j, 0, n}]]; Flatten[Table[T[n, k],{n, 0, 8}, {k, 0, n}]] (* Detlef Meya, May 28 2024 *)

Formula

T(n, k) = if k = 0 then 1, otherwise 4^k*Sum_{j=0..n} (5/4)^j * binomial(k, j) * binomial(k - 2 + ((n - k)/2), j - 2 + ((n - k)/2)). - Detlef Meya, May 28 2024

A299845 a(n) = hypergeom([-n, n - 1], [1], -4).

Original entry on oeis.org

1, 1, 25, 425, 7025, 116625, 1951625, 32903225, 558265825, 9522632225, 163160773625, 2806202183625, 48420275891025, 837813745045425, 14531896733426025, 252593595973313625, 4398859688478578625, 76733590756134492225, 1340547988367851940825, 23451231922182584693225
Offset: 0

Views

Author

Peter Luschny, Mar 16 2018

Keywords

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({4*n*(n-2)^2*a(n)+4*(n-1)^2*(n-3)*a(n-2)-4*(2*n-3)*(9*n^2-27*n+17)*a(n-1)=0,
    a(0)=1,a(1)=1,a(2)=25},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Mar 21 2018
  • Mathematica
    a[n_] := Hypergeometric2F1[-n, n - 1, 1, -4]; Table[a[n], {n, 0, 19}]
    a[0]:=1; a[1]:=1; a[n_] := 4^n*Sum[(5/4)^k*(Gamma[n + 1]*Gamma[n - 1])/(Gamma[k + 1]*Gamma[n - k + 1]^2*Gamma[k - 1]),{k,0,n}]; Flatten[Table[a[n],{n,0,19}]] (* Detlef Meya, May 22 2024 *)

Formula

4*n*(n-2)^2*a(n) + 4*(n-1)^2*(n-3)*a(n-2) - 4*(2*n-3)*(9*n^2-27*n+17)*a(n-1) = 0. - Robert Israel, Mar 21 2018
a(n) ~ 2^(-3/2) * 5^(3/4) * phi^(6*n - 3) / sqrt(Pi*n), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 05 2018
a(n) = 4^n*Sum_{k=0..n} (5/4)^k*Gamma(n + 1)*Gamma(n - 1)/(Gamma(k + 1)*Gamma(n - k + 1)^2*Gamma(k - 1)) for n >= 2. - Detlef Meya, May 22 2024

A299506 a(n) = hypergeom([-n, n - 1/2], [1], -4).

Original entry on oeis.org

1, 3, 43, 661, 10515, 171097, 2828101, 47284251, 797456947, 13540982665, 231188344401, 3964874384863, 68252711769373, 1178662654873191, 20409993947488075, 354260920943874245, 6161735337225790035, 107368528677807960185, 1873946997372948997345, 32754419073618998202975
Offset: 0

Views

Author

Peter Luschny, Mar 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Hypergeometric2F1[-n, n - 1/2, 1, -4]; Table[a[n], {n, 0, 19}]
    a[n_] := 4^n*Sum[(5/4)^k*(Gamma[n + 1]*Gamma[n - 1/2])/(Gamma[k + 1]*Gamma[n - k + 1]^2*Gamma[k - 1/2]),{k,0,n}]; Flatten[Table[a[n],{n,0,19}]] (* Detlef Meya, May 22 2024 *)

Formula

From Vaclav Kotesovec, Jul 05 2018: (Start)
Recurrence: n*(2*n - 3)*(4*n - 7)*a(n) = 9*(4*n - 5)*(4*n^2 - 10*n + 5)*a(n-1) - (n-1)*(2*n - 5)*(4*n - 3)*a(n-2).
a(n) ~ 2^(-3/2) * sqrt(5) * phi^(6*n - 3/2) / sqrt(Pi*n), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. (End)
a(n) = 4^n*Sum_{k=0..n} (5/4)^k*(Gamma(n + 1)*Gamma(n - 1/2))/(Gamma(k + 1)*Gamma(n - k + 1)^2*Gamma(k - 1/2)). - Detlef Meya, May 22 2024
Showing 1-7 of 7 results.