A245927
G.f.: sqrt( (1-x - sqrt(1-14*x+x^2)) / (6*x*(1-14*x+x^2)) ).
Original entry on oeis.org
1, 9, 99, 1175, 14499, 183195, 2351805, 30539241, 400000275, 5274560891, 69929215641, 931226954949, 12446852889901, 166888293332805, 2243683808486451, 30235162687458327, 408274269493595283, 5523024440001832875, 74834275541765522505, 1015429462194625633125
Offset: 0
G.f.: A(x) = 1 + 9*x + 99*x^2 + 1175*x^3 + 14499*x^4 + 183195*x^5 +... where
A(x)^2 = (1-x - sqrt(1-14*x+x^2)) / (6*x*(1-14*x+x^2)). Explicitly,
A(x)^2 = 1 + 18*x + 279*x^2 + 4132*x^3 + 59949*x^4 + 860022*x^5 + 12252547*x^6 + 173756232*x^7 + 2456093529*x^8 +...+ A245924(n)*x^n +...
-
seq(add( binomial(2*n+1,2*k)*binomial(2*k,k)*3^(n-k), k = 0..n),n = 0..20); # Peter Bala, Mar 17 2018
-
CoefficientList[Series[Sqrt[(1-x-Sqrt[1-14x+x^2])/(6x(1-14x+x^2))],{x,0,20}],x] (* Harvey P. Dale, Oct 23 2015 *)
a[n_] := (-1)^n Hypergeometric2F1[-n, n + 3/2, 1, 4];
Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 17 2018 *)
-
/* From definition: */
{a(n)=polcoeff( sqrt( (1-x - sqrt(1-14*x+x^2 +x^2*O(x^n))) / (6*x*(1-14*x+x^2 +x*O(x^n))) ), n)}
for(n=0, 20, print1(a(n), ", "))
-
/* From formula for a(n)^2: */
{a(n)=sqrtint((-1/3)*sum(k=0, 2*n+1, sum(j=0, 4*n-2*k+2, (-1)^(j+k)*binomial(4*n-k+2,j+k)^2*binomial(j+k, k)^2)))}
for(n=0, 20, print1(a(n), ", "))
A243946
Expansion of sqrt( (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)) ).
Original entry on oeis.org
1, 7, 91, 1345, 20995, 337877, 5544709, 92234527, 1549694195, 26237641045, 446925926881, 7650344197987, 131489964887341, 2267722252458475, 39224201631222475, 680160975405238145, 11820134678459908115, 205812328555924135045, 3589742656727603141425, 62707329988264214752675
Offset: 0
G.f.: A(x) = 1 + 7*x + 91*x^2 + 1345*x^3 + 20995*x^4 + 337877*x^5 + ...,
where A(x)^2 = (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)).
-
seq(add(binomial(n,k)*binomial(n+k,k)*binomial(2*n+2*k,n+k), k = 0..n)/binomial(2*n,n), n = 0..20); # Peter Bala, Mar 14 2018
-
a[n_] := Hypergeometric2F1[-n, n + 1/2, 1, -4];
Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 16 2018 *)
CoefficientList[Series[Sqrt[(1+x+Sqrt[1-18x+x^2])/(2(1-18x+x^2))],{x,0,20}],x] (* Harvey P. Dale, Dec 26 2019 *)
a[n_] := Sum[(5^k Gamma[2 n + 1])/(Gamma[2 k + 1]*Gamma[n - k + 1]^2), {k, 0, n}];
Flatten[Table[a[n], {n, 0, 19}]] (* Detlef Meya, May 22 2024 *)
-
/* From definition: */
{a(n)=polcoeff( sqrt( (1+x + sqrt(1-18*x+x^2 +x*O(x^n))) / (2*(1-18*x+x^2 +x*O(x^n))) ), n)}
for(n=0, 20, print1(a(n), ", "))
-
/* From a(n) = sqrt( A243945(2*n) ): */
{a(n)=sqrtint( sum(k=0, 2*n, binomial(2*k, k)^2*binomial(2*n+k, 2*n-k)) )}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 5^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))} \\ Seiichi Manyama, Aug 25 2020
-
from math import comb
def A243946(n): return sum(5**(n-k)*comb(m:=k<<1,k)*comb(n<<1,m) for k in range(n+1)) # Chai Wah Wu, Mar 23 2023
A243945
a(n) = Sum_{k=0..n} C(2*k, k)^2 * C(n+k, n-k).
Original entry on oeis.org
1, 5, 49, 605, 8281, 120125, 1809025, 27966125, 440790025, 7051890125, 114160867129, 1865975723045, 30743797894681, 509948702030045, 8507207970913729, 142626515754330125, 2401552098016698025, 40591712338241826125, 688413807606268692025, 11710401759994742685125
Offset: 0
G.f.: A(x) = 1 + 5*x + 49*x^2 + 605*x^3 + 8281*x^4 + 120125*x^5 + ... where
A(x) = 1/(1-x) + 2^2*x/(1-x)^3 + 6^2*x^2/(1-x)^5 + 20^2*x^3/(1-x)^7 + 70^2*x^4/(1-x)^9 + 252^2*x^5/(1-x)^11 + 924^2*x^6/(1-x)^13 + ... + A000984(n)^2*x^n/(1-x)^(2*n+1) + ...
-
&cat[ [&+[ Binomial(2*k, k)^2 * Binomial(n+k, n-k): k in [0..n]]]: n in [0..30]]; // Vincenzo Librandi, Aug 25 2018
-
Table[Sum[Binomial[2*k, k]^2 * Binomial[n + k, n - k],{k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 18 2014 *)
a[n_] := HypergeometricPFQ[{1/2, -n, n + 1}, {1, 1}, -4];
Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 14 2018 *)
-
{a(n)=sum(k=0, n, binomial(2*k, k)^2*binomial(n+k, n-k))}
for(n=0, 20, print1(a(n), ", "))
-
{a(n)=local(A=1); A=sum(m=0, n, binomial(2*m, m)^2 * x^m/(1-x +x*O(x^n))^(2*m+1)); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n)=polcoeff( 1 / agm(1-x, sqrt((1-x)^2 - 16*x +x*O(x^n))), n)}
for(n=0,20,print1(a(n),", "))
A300945
Rectangular array A(n, k) = hypergeom([-k, k + n/2 - 1], [1], -4) with row n >= 0 and k >= 0, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 3, 25, 1, 5, 43, 425, 1, 7, 65, 661, 7025, 1, 9, 91, 965, 10515, 116625, 1, 11, 121, 1345, 15105, 171097, 1951625, 1, 13, 155, 1809, 20995, 243525, 2828101, 32903225, 1, 15, 193, 2365, 28401, 337877, 4001345, 47284251, 558265825
Offset: 0
[0] 1, 1, 25, 425, 7025, 116625, 1951625, 32903225, ... [A299845]
[1] 1, 3, 43, 661, 10515, 171097, 2828101, 47284251, ... [A299506]
[2] 1, 5, 65, 965, 15105, 243525, 4001345, 66622085, ...
[3] 1, 7, 91, 1345, 20995, 337877, 5544709, 92234527, ... [A243946]
[4] 1, 9, 121, 1809, 28401, 458649, 7544041, 125700129, ... [A084769]
[5] 1, 11, 155, 2365, 37555, 610897, 10098997, 168894355, ... [A243947]
[6] 1, 13, 193, 3021, 48705, 800269, 13324417, 224028877, ...
-
Arow[n_, len_] := Table[Hypergeometric2F1[-k, k + n/2 - 1, 1, -4], {k, 0, len}];
Table[Print[Arow[n, 7]], {n, 0, 6}];
T[n_, k_] := If[k==0, 1, 4^k*Sum[(5/4)^j*Binomial[k, j]*Binomial[k - 2 + ((n - k)/2), j - 2 + ((n - k)/2)] ,{j, 0, n}]]; Flatten[Table[T[n, k],{n, 0, 8}, {k, 0, n}]] (* Detlef Meya, May 28 2024 *)
A337369
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of sqrt(2 / ( (1-2*(k+4)*x+((k-4)*x)^2) * (1+(k-4)*x+sqrt(1-2*(k+4)*x+((k-4)*x)^2)) )).
Original entry on oeis.org
1, 1, 6, 1, 7, 30, 1, 8, 51, 140, 1, 9, 74, 393, 630, 1, 10, 99, 736, 3139, 2772, 1, 11, 126, 1175, 7606, 25653, 12012, 1, 12, 155, 1716, 14499, 80464, 212941, 51480, 1, 13, 186, 2365, 24310, 183195, 864772, 1787607, 218790, 1, 14, 219, 3128, 37555, 352716, 2351805, 9400192, 15134931, 923780
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
6, 7, 8, 9, 10, 11, ...
30, 51, 74, 99, 126, 155, ...
140, 393, 736, 1175, 1716, 2365, ...
630, 3139, 7606, 14499, 24310, 37555, ...
2772, 25653, 80464, 183195, 352716, 610897, ...
-
T[n_, k_] := Sum[If[k == 0, Boole[n == j], k^(n - j)] * Binomial[2*j, j] * Binomial[2*n + 1, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 25 2020 *)
-
{T(n, k) = sum(j=0, n, k^(n-j)*binomial(2*j, j)*binomial(2*n+1, 2*j))}
A299845
a(n) = hypergeom([-n, n - 1], [1], -4).
Original entry on oeis.org
1, 1, 25, 425, 7025, 116625, 1951625, 32903225, 558265825, 9522632225, 163160773625, 2806202183625, 48420275891025, 837813745045425, 14531896733426025, 252593595973313625, 4398859688478578625, 76733590756134492225, 1340547988367851940825, 23451231922182584693225
Offset: 0
-
f:= gfun:-rectoproc({4*n*(n-2)^2*a(n)+4*(n-1)^2*(n-3)*a(n-2)-4*(2*n-3)*(9*n^2-27*n+17)*a(n-1)=0,
a(0)=1,a(1)=1,a(2)=25},a(n),remember):
map(f, [$0..100]); # Robert Israel, Mar 21 2018
-
a[n_] := Hypergeometric2F1[-n, n - 1, 1, -4]; Table[a[n], {n, 0, 19}]
a[0]:=1; a[1]:=1; a[n_] := 4^n*Sum[(5/4)^k*(Gamma[n + 1]*Gamma[n - 1])/(Gamma[k + 1]*Gamma[n - k + 1]^2*Gamma[k - 1]),{k,0,n}]; Flatten[Table[a[n],{n,0,19}]] (* Detlef Meya, May 22 2024 *)
A299506
a(n) = hypergeom([-n, n - 1/2], [1], -4).
Original entry on oeis.org
1, 3, 43, 661, 10515, 171097, 2828101, 47284251, 797456947, 13540982665, 231188344401, 3964874384863, 68252711769373, 1178662654873191, 20409993947488075, 354260920943874245, 6161735337225790035, 107368528677807960185, 1873946997372948997345, 32754419073618998202975
Offset: 0
-
a[n_] := Hypergeometric2F1[-n, n - 1/2, 1, -4]; Table[a[n], {n, 0, 19}]
a[n_] := 4^n*Sum[(5/4)^k*(Gamma[n + 1]*Gamma[n - 1/2])/(Gamma[k + 1]*Gamma[n - k + 1]^2*Gamma[k - 1/2]),{k,0,n}]; Flatten[Table[a[n],{n,0,19}]] (* Detlef Meya, May 22 2024 *)
Showing 1-7 of 7 results.
Comments