cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A245927 G.f.: sqrt( (1-x - sqrt(1-14*x+x^2)) / (6*x*(1-14*x+x^2)) ).

Original entry on oeis.org

1, 9, 99, 1175, 14499, 183195, 2351805, 30539241, 400000275, 5274560891, 69929215641, 931226954949, 12446852889901, 166888293332805, 2243683808486451, 30235162687458327, 408274269493595283, 5523024440001832875, 74834275541765522505, 1015429462194625633125
Offset: 0

Views

Author

Paul D. Hanna, Aug 15 2014

Keywords

Comments

Multiply the square of each term by -3 to form a bisection of A245925.
Limit a(n+1)/a(n) = 7 + 4*sqrt(3).

Examples

			G.f.: A(x) = 1 + 9*x + 99*x^2 + 1175*x^3 + 14499*x^4 + 183195*x^5 +... where
A(x)^2 = (1-x - sqrt(1-14*x+x^2)) / (6*x*(1-14*x+x^2)). Explicitly,
A(x)^2 = 1 + 18*x + 279*x^2 + 4132*x^3 + 59949*x^4 + 860022*x^5 + 12252547*x^6 + 173756232*x^7 + 2456093529*x^8 +...+ A245924(n)*x^n +...
		

Crossrefs

Programs

  • Maple
    seq(add( binomial(2*n+1,2*k)*binomial(2*k,k)*3^(n-k), k = 0..n),n = 0..20); # Peter Bala, Mar 17 2018
  • Mathematica
    CoefficientList[Series[Sqrt[(1-x-Sqrt[1-14x+x^2])/(6x(1-14x+x^2))],{x,0,20}],x] (* Harvey P. Dale, Oct 23 2015 *)
    a[n_] := (-1)^n Hypergeometric2F1[-n, n + 3/2, 1, 4];
    Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 17 2018 *)
  • PARI
    /* From definition: */
    {a(n)=polcoeff( sqrt( (1-x - sqrt(1-14*x+x^2 +x^2*O(x^n))) / (6*x*(1-14*x+x^2 +x*O(x^n))) ), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From formula for a(n)^2: */
    {a(n)=sqrtint((-1/3)*sum(k=0, 2*n+1, sum(j=0, 4*n-2*k+2, (-1)^(j+k)*binomial(4*n-k+2,j+k)^2*binomial(j+k, k)^2)))}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n)^2 = (-1/3)*Sum_{k=0..2*n+1} Sum_{j=0..4*n-2*k+2} (-1)^(j+k) * C(4*n-k+2,j+k)^2 * C(j+k,k)^2.
a(n) ~ (3-sqrt(3)) * (7+4*sqrt(3))^(n+1) / (12*sqrt(Pi*n)). - Vaclav Kotesovec, Aug 16 2014
From Peter Bala, Mar 17 2018: (Start)
a(n) = Sum_{k = 0..n} C(2*n+1,2*k)*C(2*k,k)*3^(n-k).
a(n) = 3^n*hypergeom([-n, -n-1/2], [1], 4/3).
n*(4*n-3)*(2*n+1)*a(n) = (4*n-1)*(28*n^2-14*n-5)*a(n-1) - (n-1)*(2*n-1)*(4*n+1)*a(n-2). (End)
a(n) = (-1)^n*hypergeom([-n, n + 3/2], [1], 4). Peter Luschny, Mar 17 2018
a(n) = (-1)^n/sqrt(-3) * P(2*n+1, sqrt(-3)), where P(n, x) denotes the n-th Legendre polynomial. - Peter Bala, Mar 17 2024

A243946 Expansion of sqrt( (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)) ).

Original entry on oeis.org

1, 7, 91, 1345, 20995, 337877, 5544709, 92234527, 1549694195, 26237641045, 446925926881, 7650344197987, 131489964887341, 2267722252458475, 39224201631222475, 680160975405238145, 11820134678459908115, 205812328555924135045, 3589742656727603141425, 62707329988264214752675
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2014

Keywords

Comments

Square each term to form a bisection of A243945.
Limit_{n->oo} a(n+1)/a(n) = 9 + 4*sqrt(5).

Examples

			G.f.: A(x) = 1 + 7*x + 91*x^2 + 1345*x^3 + 20995*x^4 + 337877*x^5 + ...,
where A(x)^2 = (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)).
		

Crossrefs

Programs

  • Maple
    seq(add(binomial(n,k)*binomial(n+k,k)*binomial(2*n+2*k,n+k), k = 0..n)/binomial(2*n,n), n = 0..20); # Peter Bala, Mar 14 2018
  • Mathematica
    a[n_] := Hypergeometric2F1[-n, n + 1/2, 1, -4];
    Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 16 2018 *)
    CoefficientList[Series[Sqrt[(1+x+Sqrt[1-18x+x^2])/(2(1-18x+x^2))],{x,0,20}],x] (* Harvey P. Dale, Dec 26 2019 *)
    a[n_] := Sum[(5^k Gamma[2 n + 1])/(Gamma[2 k + 1]*Gamma[n - k + 1]^2), {k, 0, n}];
    Flatten[Table[a[n], {n, 0, 19}]] (* Detlef Meya, May 22 2024 *)
  • PARI
    /* From definition: */
    {a(n)=polcoeff( sqrt( (1+x + sqrt(1-18*x+x^2 +x*O(x^n))) / (2*(1-18*x+x^2 +x*O(x^n))) ), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* From a(n) = sqrt( A243945(2*n) ): */
    {a(n)=sqrtint( sum(k=0, 2*n, binomial(2*k, k)^2*binomial(2*n+k, 2*n-k)) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = sum(k=0, n, 5^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))} \\ Seiichi Manyama, Aug 25 2020
    
  • Python
    from math import comb
    def A243946(n): return sum(5**(n-k)*comb(m:=k<<1,k)*comb(n<<1,m) for k in range(n+1)) # Chai Wah Wu, Mar 23 2023

Formula

a(n)^2 = Sum_{k=0..2*n} C(2*k, k)^2 * C(2*n+k, 2*n-k).
a(n) ~ sqrt(2+sqrt(5)) * (9+4*sqrt(5))^n / (2*sqrt(2*Pi*n)). - Vaclav Kotesovec, Aug 18 2014. Equivalently, a(n) ~ phi^(6*n + 3/2) / (2*sqrt(2*Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
From Peter Bala, Mar 14 2018: (Start)
a(n) = P(2*n,sqrt(5)), where P(n,x) denotes the n-th Legendre polynomial. See A008316.
a(n) = (1/C(2*n,n))*Sum_{k = 0..n} C(n,k)*C(n+k,k)* C(2*n+2*k,n+k). In general, P(2*n,sqrt(1 + 4*x)) = (1/C(2*n,n))*Sum_{k=0..n} C(n,k)*C(n+k,k)*C(2*n+2*k,n+k)*x^k.
a(n) = Sum_{k = 0..2*n} C(2*n,k)^2 * phi^(2*n-2*k), where phi = (sqrt(5) + 1)/2.
a(n) = Sum_{k = 0..2*n} C(2*n,k)*C(2*n+k,k)*Phi^k, where Phi = (sqrt(5) - 1)/2. (End)
a(n) = hypergeom([-n, n + 1/2], [1], -4). - Peter Luschny, Mar 16 2018
D-finite with recurrence: n*(2*n-1)*(4*n-5)*a(n) -(4*n-3)*(36*n^2-54*n+11)*a(n-1) +(n-1)*(4*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 20 2020
a(n) = Sum_{k=0..n} 5^(n-k) * binomial(2*k,k) * binomial(2*n,2*k). - Seiichi Manyama, Aug 25 2020

A243945 a(n) = Sum_{k=0..n} C(2*k, k)^2 * C(n+k, n-k).

Original entry on oeis.org

1, 5, 49, 605, 8281, 120125, 1809025, 27966125, 440790025, 7051890125, 114160867129, 1865975723045, 30743797894681, 509948702030045, 8507207970913729, 142626515754330125, 2401552098016698025, 40591712338241826125, 688413807606268692025, 11710401759994742685125
Offset: 0

Views

Author

Paul D. Hanna, Aug 17 2014

Keywords

Comments

The g.f.s formed from a(2*n)^(1/2) and (a(2*n+1)/5)^(1/2) are:
A243946: sqrt( (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)) );
A243947: sqrt( (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)) ).
Lim_{n->infinity} a(n+1)/a(n) = 9 + 4*sqrt(5).
Diagonal of rational function 1/(1 - (x + y + x*z + y*z + x*y*z)). - Gheorghe Coserea, Aug 24 2018

Examples

			G.f.: A(x) = 1 + 5*x + 49*x^2 + 605*x^3 + 8281*x^4 + 120125*x^5 + ... where
A(x) = 1/(1-x) + 2^2*x/(1-x)^3 + 6^2*x^2/(1-x)^5 + 20^2*x^3/(1-x)^7 + 70^2*x^4/(1-x)^9 + 252^2*x^5/(1-x)^11 + 924^2*x^6/(1-x)^13 + ... + A000984(n)^2*x^n/(1-x)^(2*n+1) + ...
		

Crossrefs

Programs

  • Magma
    &cat[ [&+[ Binomial(2*k, k)^2 * Binomial(n+k, n-k): k in [0..n]]]: n in [0..30]]; // Vincenzo Librandi, Aug 25 2018
  • Mathematica
    Table[Sum[Binomial[2*k, k]^2 * Binomial[n + k, n - k],{k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 18 2014 *)
    a[n_] := HypergeometricPFQ[{1/2, -n, n + 1}, {1, 1}, -4];
    Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 14 2018 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(2*k, k)^2*binomial(n+k, n-k))}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1); A=sum(m=0, n, binomial(2*m, m)^2 * x^m/(1-x +x*O(x^n))^(2*m+1)); polcoeff(A, n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff( 1 / agm(1-x, sqrt((1-x)^2 - 16*x +x*O(x^n))), n)}
    for(n=0,20,print1(a(n),", "))
    

Formula

G.f.: Sum_{n>=0} binomial(2*n, n)^2 * x^n / (1-x)^(2*n+1).
G.f.: 1 / AGM(1-x, sqrt(1-18*x+x^2)), where AGM(x,y) = AGM((x+y)/2,sqrt(x*y)) is the arithmetic-geometric mean.
a(2*n) = A243946(n)^2.
a(2*n+1) = 5 * A243947(n)^2.
Recurrence: n^2*(2*n-3)*a(n) = (2*n-1)*(19*n^2 - 38*n + 14)*a(n-1) - (2*n-3)*(19*n^2 - 38*n + 14)*a(n-2) + (n-2)^2*(2*n-1)*a(n-3). - Vaclav Kotesovec, Aug 18 2014
a(n) ~ (2+sqrt(5)) * (9+4*sqrt(5))^n / (4*Pi*n). - Vaclav Kotesovec, Aug 18 2014. Equivalently, a(n) ~ phi^(6*n + 3) / (4*Pi*n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
a(n) = hypergeom([1/2, -n, n + 1], [1, 1], -4). - Peter Luschny, Mar 14 2018
G.f. y=A(x) satisfies: 0 = x*(x^2 - 1)*(x^2 - 18*x + 1)*y'' + (3*x^4 - 34*x^3 - 38*x^2 + 38*x - 1)*y' + (x^3 - 3*x^2 - 19*x + 5)*y. - Gheorghe Coserea, Aug 29 2018
From Peter Bala, Feb 07 2022: (Start)
a(n) = P(n,sqrt(5))^2, where P(n,x) denotes the n-th Legendre polynomial.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) hold for all primes p and positive integers n and k. (End)

A300945 Rectangular array A(n, k) = hypergeom([-k, k + n/2 - 1], [1], -4) with row n >= 0 and k >= 0, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 25, 1, 5, 43, 425, 1, 7, 65, 661, 7025, 1, 9, 91, 965, 10515, 116625, 1, 11, 121, 1345, 15105, 171097, 1951625, 1, 13, 155, 1809, 20995, 243525, 2828101, 32903225, 1, 15, 193, 2365, 28401, 337877, 4001345, 47284251, 558265825
Offset: 0

Views

Author

Peter Luschny, Mar 16 2018

Keywords

Examples

			[0] 1,  1,  25,  425,  7025, 116625,  1951625,  32903225, ... [A299845]
[1] 1,  3,  43,  661, 10515, 171097,  2828101,  47284251, ... [A299506]
[2] 1,  5,  65,  965, 15105, 243525,  4001345,  66622085, ...
[3] 1,  7,  91, 1345, 20995, 337877,  5544709,  92234527, ... [A243946]
[4] 1,  9, 121, 1809, 28401, 458649,  7544041, 125700129, ... [A084769]
[5] 1, 11, 155, 2365, 37555, 610897, 10098997, 168894355, ... [A243947]
[6] 1, 13, 193, 3021, 48705, 800269, 13324417, 224028877, ...
		

Crossrefs

Programs

  • Mathematica
    Arow[n_, len_] := Table[Hypergeometric2F1[-k, k + n/2 - 1, 1, -4], {k, 0, len}];
    Table[Print[Arow[n, 7]], {n, 0, 6}];
    T[n_, k_] := If[k==0, 1, 4^k*Sum[(5/4)^j*Binomial[k, j]*Binomial[k - 2 + ((n - k)/2), j - 2 + ((n - k)/2)] ,{j, 0, n}]]; Flatten[Table[T[n, k],{n, 0, 8}, {k, 0, n}]] (* Detlef Meya, May 28 2024 *)

Formula

T(n, k) = if k = 0 then 1, otherwise 4^k*Sum_{j=0..n} (5/4)^j * binomial(k, j) * binomial(k - 2 + ((n - k)/2), j - 2 + ((n - k)/2)). - Detlef Meya, May 28 2024

A337369 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of sqrt(2 / ( (1-2*(k+4)*x+((k-4)*x)^2) * (1+(k-4)*x+sqrt(1-2*(k+4)*x+((k-4)*x)^2)) )).

Original entry on oeis.org

1, 1, 6, 1, 7, 30, 1, 8, 51, 140, 1, 9, 74, 393, 630, 1, 10, 99, 736, 3139, 2772, 1, 11, 126, 1175, 7606, 25653, 12012, 1, 12, 155, 1716, 14499, 80464, 212941, 51480, 1, 13, 186, 2365, 24310, 183195, 864772, 1787607, 218790, 1, 14, 219, 3128, 37555, 352716, 2351805, 9400192, 15134931, 923780
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2020

Keywords

Examples

			Square array begins:
     1,     1,     1,      1,      1,      1, ...
     6,     7,     8,      9,     10,     11, ...
    30,    51,    74,     99,    126,    155, ...
   140,   393,   736,   1175,   1716,   2365, ...
   630,  3139,  7606,  14499,  24310,  37555, ...
  2772, 25653, 80464, 183195, 352716, 610897, ...
		

Crossrefs

Columns k=0..5 give A002457, A273055, A337370, A245927, A002458, A243947.
Main diagonal gives A337387.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == 0, Boole[n == j], k^(n - j)] * Binomial[2*j, j] * Binomial[2*n + 1, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 25 2020 *)
  • PARI
    {T(n, k) = sum(j=0, n, k^(n-j)*binomial(2*j, j)*binomial(2*n+1, 2*j))}

Formula

T(n,k) = Sum_{j=0..n} k^(n-j) * binomial(2*j,j) * binomial(2*n+1,2*j).
T(0,k) = 1, T(1,k) = k+6 and n * (2*n+1) * (4*n-3) * T(n,k) = (4*n-1) * (4*(k+4)*n^2-2*(k+4)*n-k-2) * T(n-1,k) - (k-4)^2 * (n-1) * (2*n-1) * (4*n+1) * T(n-2,k) for n > 1. - Seiichi Manyama, Aug 29 2020
For fixed k > 0, T(n,k) ~ (2 + sqrt(k))^(2*n + 3/2) / sqrt(8*k*Pi*n). - Vaclav Kotesovec, Aug 31 2020

A299845 a(n) = hypergeom([-n, n - 1], [1], -4).

Original entry on oeis.org

1, 1, 25, 425, 7025, 116625, 1951625, 32903225, 558265825, 9522632225, 163160773625, 2806202183625, 48420275891025, 837813745045425, 14531896733426025, 252593595973313625, 4398859688478578625, 76733590756134492225, 1340547988367851940825, 23451231922182584693225
Offset: 0

Views

Author

Peter Luschny, Mar 16 2018

Keywords

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({4*n*(n-2)^2*a(n)+4*(n-1)^2*(n-3)*a(n-2)-4*(2*n-3)*(9*n^2-27*n+17)*a(n-1)=0,
    a(0)=1,a(1)=1,a(2)=25},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Mar 21 2018
  • Mathematica
    a[n_] := Hypergeometric2F1[-n, n - 1, 1, -4]; Table[a[n], {n, 0, 19}]
    a[0]:=1; a[1]:=1; a[n_] := 4^n*Sum[(5/4)^k*(Gamma[n + 1]*Gamma[n - 1])/(Gamma[k + 1]*Gamma[n - k + 1]^2*Gamma[k - 1]),{k,0,n}]; Flatten[Table[a[n],{n,0,19}]] (* Detlef Meya, May 22 2024 *)

Formula

4*n*(n-2)^2*a(n) + 4*(n-1)^2*(n-3)*a(n-2) - 4*(2*n-3)*(9*n^2-27*n+17)*a(n-1) = 0. - Robert Israel, Mar 21 2018
a(n) ~ 2^(-3/2) * 5^(3/4) * phi^(6*n - 3) / sqrt(Pi*n), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 05 2018
a(n) = 4^n*Sum_{k=0..n} (5/4)^k*Gamma(n + 1)*Gamma(n - 1)/(Gamma(k + 1)*Gamma(n - k + 1)^2*Gamma(k - 1)) for n >= 2. - Detlef Meya, May 22 2024

A299506 a(n) = hypergeom([-n, n - 1/2], [1], -4).

Original entry on oeis.org

1, 3, 43, 661, 10515, 171097, 2828101, 47284251, 797456947, 13540982665, 231188344401, 3964874384863, 68252711769373, 1178662654873191, 20409993947488075, 354260920943874245, 6161735337225790035, 107368528677807960185, 1873946997372948997345, 32754419073618998202975
Offset: 0

Views

Author

Peter Luschny, Mar 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Hypergeometric2F1[-n, n - 1/2, 1, -4]; Table[a[n], {n, 0, 19}]
    a[n_] := 4^n*Sum[(5/4)^k*(Gamma[n + 1]*Gamma[n - 1/2])/(Gamma[k + 1]*Gamma[n - k + 1]^2*Gamma[k - 1/2]),{k,0,n}]; Flatten[Table[a[n],{n,0,19}]] (* Detlef Meya, May 22 2024 *)

Formula

From Vaclav Kotesovec, Jul 05 2018: (Start)
Recurrence: n*(2*n - 3)*(4*n - 7)*a(n) = 9*(4*n - 5)*(4*n^2 - 10*n + 5)*a(n-1) - (n-1)*(2*n - 5)*(4*n - 3)*a(n-2).
a(n) ~ 2^(-3/2) * sqrt(5) * phi^(6*n - 3/2) / sqrt(Pi*n), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. (End)
a(n) = 4^n*Sum_{k=0..n} (5/4)^k*(Gamma(n + 1)*Gamma(n - 1/2))/(Gamma(k + 1)*Gamma(n - k + 1)^2*Gamma(k - 1/2)). - Detlef Meya, May 22 2024
Showing 1-7 of 7 results.