A245925
G.f.: Sum_{n>=0} x^n*Sum_{k=0..n} (-1)^k * C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * x^j.
Original entry on oeis.org
1, -3, 25, -243, 2601, -29403, 344569, -4141875, 50737129, -630663003, 7930793025, -100681224075, 1288236350025, -16592960274075, 214939203248025, -2797935722568243, 36578032462268649, -480000660000226875, 6320012816203363489, -83462977778600141643, 1105193229806740453201
Offset: 0
G.f.: A(x) = 1 - 3*x^2 + 25*x^4 - 243*x^6 + 2601*x^8 - 29403*x^10 + ...
where the g.f. is given by the binomial series:
A(x) = 1 + x*(1 - (1+x)) + x^2*(1 - 2^2*(1+x) + (1+2^2*x+x^2))
+ x^3*(1 - 3^2*(1+x) + 3^2*(1+2^2*x+x^2) - (1+3^2*x+3^2*x^2+x^3))
+ x^4*(1 - 4^2*(1+x) + 6^2*(1+2^2*x+x^2) - 4^2*(1+3^2*x+3^2*x^2+x^3) + (1+4^2*x+6^2*x^2+4^2*x^3+x^4))
+ x^5*(1 - 5^2*(1+x) + 10^2*(1+2^2*x+x^2) - 10^2*(1+3^2*x+3^2*x^2+x^3) + 5^2*(1+4^2*x+6^2*x^2+4^2*x^3+x^4) - (1+5^2*x+10^2*x^2+10^2*x^3+5^2*x^4+x^5))
+ x^6*(1 - 6^2*(1+x) + 15^2*(1+2^2*x+x^2) - 20^2*(1+3^2*x+3^2*x^2+x^3) + 15^2*(1+4^2*x+6^2*x^2+4^2*x^3+x^4) - 6^2*(1+5^2*x+10^2*x^2+10^2*x^3+5^2*x^4+x^5) + (1+6^2*x+15^2*x^2+20^2*x^3+15^2*x^4+6^2*x^5+x^6)) + ...
in which the coefficients of odd powers of x vanish.
We can also express the g.f. by the binomial series identity:
A(x) = 1/(1+x) + x/(1+x)^3*(1-x)^2 + x^2/(1+x)^5*(1 - 2^2*x + x^2)^2
+ x^3/(1+x)^7*(1 - 3^2*x + 3^2*x^2 - x^3)^2
+ x^4/(1+x)^9*(1 - 4^2*x + 6^2*x^2 - 4^2*x^3 + x^4)^2
+ x^5/(1+x)^11*(1 - 5^2*x + 10^2*x^2 - 10^2*x^3 + 5^2*x^4 - x^5)^2
+ x^6/(1+x)^13*(1 - 6^2*x + 15^2*x^2 - 20^2*x^3 + 15^2*x^4 - 6^2*x^5 + x^6)^2 + ...
-
A245925 := n -> (-1)^n*add(binomial(2*(n-k), n-k)*binomial(2*n-k, k)^2, k=0..n); seq(A245925(n), n=0..20); # Peter Luschny, Aug 17 2014
-
Table[Sum[Sum[(-1)^(j+k) * Binomial[2*n - k, j + k]^2 * Binomial[j + k, k]^2, {j, 0, 2*n - 2*k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 16 2014 after Paul D. Hanna *)
a[n_] := (-1)^n*HypergeometricPFQ[{-n, -n, n + 1, n + 1}, {1/2, 1, 1}, 1/4];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Mar 14 2018 *)
-
/* By definition: */
{a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, (-1)^k*binomial(m, k)^2*sum(j=0, k, binomial(k, j)^2*x^j)+x*O(x^n))), n)}
for(n=0, 20, print1(a(2*n), ", "))
-
/* From alternate g.f.: */
{a(n)=local(A=1);A=sum(m=0,n,x^m/(1+x)^(2*m+1)*sum(k=0,m,binomial(m,k)^2*(-x)^k)^2+x*O(x^n));polcoeff(A,n)}
for(n=0,20,print1(a(2*n),", "))
-
/* From formula for a(n); printing only nonzero terms: */
{a(n)=sum(k=0, n\2, sum(j=0, n-2*k, (-1)^(j+k)*binomial(n-k, j+k)^2*binomial(j+k, k)^2))}
for(n=0, 20, print1(a(2*n), ", "))
-
/* From formula for a(n) (nonzero terms): */
{a(n)=sum(k=0, n, sum(j=0, 2*n-2*k, (-1)^(j+k)*binomial(2*n-k,j+k)^2*binomial(j+k, k)^2))}
for(n=0, 20, print1(a(n), ", "))
-
/* Formula for a(n), after Peter Luschny and Robert Israel: */
{a(n) = (-1)^n * sum(k=0,n, binomial(2*k, k) * binomial(n+k, n-k)^2)}
for(n=0, 20, print1(a(n), ", "))
-
/* Simpler formula for a(n): */
{a(n) = sum(k=0, n, (-1)^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
for(n=0, 20, print1(a(n), ", "))
-
/* Using AGM: */
{a(n)=polcoeff( 1 / agm(1-x, sqrt(1+14*x+x^2 +x*O(x^n))), n)}
for(n=0,20,print1(a(n),", "))
-
A245925 = lambda n: (-1)^n*sum(binomial(2*(n-k), n-k)*binomial(2*n-k, k)^2 for k in (0..n))
[A245925(n) for n in range(21)] # Peter Luschny, Aug 17 2014
A245926
Expansion of g.f. sqrt( (1-x + sqrt(1-14*x+x^2)) / (2*(1-14*x+x^2)) ).
Original entry on oeis.org
1, 5, 51, 587, 7123, 89055, 1135005, 14660805, 191253843, 2513963567, 33244446601, 441772827105, 5894323986301, 78912561223553, 1059543126891027, 14261959492731387, 192392702881384275, 2600355510685245087, 35206018016510388345, 477377227987055971905
Offset: 0
G.f.: A(x) = 1 + 5*x + 51*x^2 + 587*x^3 + 7123*x^4 + 89055*x^5 +...
where
A(x)^2 = (1-x + sqrt(1-14*x+x^2)) / (2*(1-14*x+x^2)).
Explicitly,
A(x)^2 = 1 + 10*x + 127*x^2 + 1684*x^3 + 22717*x^4 + 309214*x^5 + 4231675*x^6 + 58117672*x^7 + 800173945*x^8 +...+ A245923(n)*x^n +...
-
A245926 := n -> sqrt(add(binomial(4*n-2*k, 2*n-k)*binomial(4*n-k, k)^2, k=0..2*n)); seq(A245926(n), n=0..20); # Peter Luschny, Aug 17 2014
-
CoefficientList[Series[Sqrt[(1 - x + Sqrt[1 - 14*x + x^2])/(2*(1 - 14*x + x^2))], {x,0,50}], x] (* G. C. Greubel, Jan 29 2017 *)
a[n_] := (-1)^n Hypergeometric2F1[-n, n + 1/2, 1, 4];
Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 16 2018 *)
-
/* From definition: */
{a(n)=polcoeff( sqrt( (1-x + sqrt(1-14*x+x^2 +x*O(x^n))) / (2*(1-14*x+x^2 +x*O(x^n))) ), n)}
for(n=0, 20, print1(a(n), ", "))
-
/* From formula for a(n)^2: */
{a(n)=sqrtint(sum(k=0, 2*n, sum(j=0, 4*n-2*k, (-1)^(j+k)*binomial(4*n-k,j+k)^2*binomial(j+k, k)^2)))}
for(n=0, 20, print1(a(n), ", "))
-
/* From formula for a(n)^2: */
{a(n) = sqrtint( sum(k=0, 2*n, binomial(2*k, k)^2*binomial(2*n+k, 2*n-k)*(-1)^k) )}
for(n=0, 20, print1(a(n), ", "))
A243947
Expansion of g.f. sqrt( (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)) ).
Original entry on oeis.org
1, 11, 155, 2365, 37555, 610897, 10098997, 168894355, 2849270515, 48395044705, 826479148001, 14177519463191, 244109912494525, 4216385987238575, 73024851218517275, 1267712063327871245, 22052786911315216595, 384321597582115655825, 6708530714274563938225
Offset: 0
G.f.: A(x) = 1 + 11*x + 155*x^2 + 2365*x^3 + 37555*x^4 + 610897*x^5 + ...
where
A(x)^2 = (1+x - sqrt(1-18*x+x^2)) / (10*x*(1-18*x+x^2)).
-
seq(add(1/2*binomial(2*k+1,k)*binomial(n,k)*binomial(2*n+2*k+2,2*n+1)/binomial(n+k+1,n), k = 0..n), n = 0..20); # Peter Bala, Mar 15 2018
-
CoefficientList[Series[Sqrt[((1+x-Sqrt[1-18x+x^2]))/(10x(1-18x+x^2))],{x,0,20}],x] (* Harvey P. Dale, Jul 31 2016 *)
a[n_] := Hypergeometric2F1[-n, n + 3/2, 1, -4];
Table[a[n], {n, 0, 18}] (* Peter Luschny, Mar 16 2018 *)
-
/* From definition: */
{a(n)=polcoeff( sqrt( (1+x - sqrt(1-18*x+x^2 +x^2*O(x^n))) / (10*x*(1-18*x+x^2 +x*O(x^n))) ), n)}
for(n=0, 20, print1(a(n), ", "))
-
/* From a(n) = sqrt( A243945(2*n+1)/5 ): */
{a(n)=sqrtint( (1/5)*sum(k=0, 2*n+1, binomial(2*k, k)^2*binomial(2*n+k+1, 2*n-k+1)) )}
for(n=0, 20, print1(a(n), ", "))
-
from math import comb
def A243947(n): return sum(5**(n-k)*comb(m:=k<<1,k)*comb((n<<1)+1,m) for k in range(n+1)) # Chai Wah Wu, Mar 23 2023
A300946
Rectangular array A(n, k) = (-1)^k*hypergeom([-k, k + n/2 - 1/2], [1], 4) with row n >= 0 and k >= 0, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 3, 19, 1, 5, 33, 239, 1, 7, 51, 387, 3011, 1, 9, 73, 587, 4737, 38435, 1, 11, 99, 847, 7123, 59523, 496365, 1, 13, 129, 1175, 10321, 89055, 761121, 6470385, 1, 15, 163, 1579, 14499, 129367, 1135005, 9854211, 84975315
Offset: 0
Array starts:
[0] 1, 1, 19, 239, 3011, 38435, 496365, 6470385, ... [A299864]
[1] 1, 3, 33, 387, 4737, 59523, 761121, 9854211, ... [A299507]
[2] 1, 5, 51, 587, 7123, 89055, 1135005, 14660805, ... [A245926]
[3] 1, 7, 73, 847, 10321, 129367, 1651609, 21360031, ... [A084768]
[4] 1, 9, 99, 1175, 14499, 183195, 2351805, 30539241, ... [A245927]
[5] 1, 11, 129, 1579, 19841, 253707, 3284737, 42924203, ...
[6] 1, 13, 163, 2067, 26547, 344535, 4508877, 59402397, ...
-
Arow[n_, len_] := Table[(-1)^k Hypergeometric2F1[-k, k + n/2 - 1/2, 1, 4], {k, 0, len}]; Table[Print[Arow[n, 7]], {n, 0, 6}];
A337369
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of sqrt(2 / ( (1-2*(k+4)*x+((k-4)*x)^2) * (1+(k-4)*x+sqrt(1-2*(k+4)*x+((k-4)*x)^2)) )).
Original entry on oeis.org
1, 1, 6, 1, 7, 30, 1, 8, 51, 140, 1, 9, 74, 393, 630, 1, 10, 99, 736, 3139, 2772, 1, 11, 126, 1175, 7606, 25653, 12012, 1, 12, 155, 1716, 14499, 80464, 212941, 51480, 1, 13, 186, 2365, 24310, 183195, 864772, 1787607, 218790, 1, 14, 219, 3128, 37555, 352716, 2351805, 9400192, 15134931, 923780
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
6, 7, 8, 9, 10, 11, ...
30, 51, 74, 99, 126, 155, ...
140, 393, 736, 1175, 1716, 2365, ...
630, 3139, 7606, 14499, 24310, 37555, ...
2772, 25653, 80464, 183195, 352716, 610897, ...
-
T[n_, k_] := Sum[If[k == 0, Boole[n == j], k^(n - j)] * Binomial[2*j, j] * Binomial[2*n + 1, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 25 2020 *)
-
{T(n, k) = sum(j=0, n, k^(n-j)*binomial(2*j, j)*binomial(2*n+1, 2*j))}
A245924
Expansion of (1-x - sqrt(1 - 14*x + x^2)) / (6*x*(1 - 14*x + x^2)).
Original entry on oeis.org
1, 18, 279, 4132, 59949, 860022, 12252547, 173756232, 2456093529, 34634926810, 487525847535, 6852798238572, 96216461002117, 1349689029354558, 18918661407653979, 265016591806251664, 3710426585319049905, 51924984423522889122, 726369947645489367751, 10157588028419864394420
Offset: 0
G.f.: A(x) = 1 + 18*x + 279*x^2 + 4132*x^3 + 59949*x^4 + 860022*x^5 +...
-
CoefficientList[Series[(1 - x - Sqrt[1 - 14*x + x^2])/(6*x*(1 - 14*x + x^2)), {x,0,50}], x] (* G. C. Greubel, Feb 14 2017 *)
-
{a(n)=polcoeff( (1-x - sqrt(1-14*x+x^2 +x^2*O(x^n))) / (6*x*(1-14*x+x^2 +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
A299507
a(n) = (-1)^n*hypergeom([-n, n], [1], 4).
Original entry on oeis.org
1, 3, 33, 387, 4737, 59523, 761121, 9854211, 128772609, 1694927619, 22437369633, 298419470979, 3984500221569, 53376363001731, 717044895641121, 9656091923587587, 130310873022310401, 1761872309456567811, 23861153881099854369, 323634591584064809859
Offset: 0
-
seq(simplify( (-1)^n*hypergeom([-n, n], [1], 4)), n = 0..20); # Peter Bala, Apr 18 2024
-
a[n_] := (-1)^n Hypergeometric2F1[-n, n, 1, 4]; Table[a[n], {n, 0, 19}]
A299864
a(n) = (-1)^n*hypergeom([-n, n - 1/2], [1], 4).
Original entry on oeis.org
1, 1, 19, 239, 3011, 38435, 496365, 6470385, 84975315, 1122708899, 14906800361, 198740733581, 2658870294349, 35677678567549, 479965685669059, 6471364940381007, 87425255326277907, 1183139999323074963, 16036589185819644633, 217668383345249016045
Offset: 0
-
seq((-1)^n*orthopoly[P](n,0,-3/2,-7),n=0..100); # Robert Israel, Mar 21 2018
-
a[n_] := (-1)^n Hypergeometric2F1[-n, n - 1/2, 1, 4]; Table[a[n], {n, 0, 19}]
A337467
Expansion of sqrt(2 / ( (1-2*x+49*x^2) * (1-7*x+sqrt(1-2*x+49*x^2)) )).
Original entry on oeis.org
1, 3, -21, -139, 531, 6489, -9723, -292293, -135117, 12514313, 29905809, -501239553, -2310673379, 18245192679, 140574917259, -562805403867, -7557237645741, 11275709877369, 371974318253601, 201852054629631, -16932135947326551, -42530838930147813, 709138646702505999
Offset: 0
-
a[n_] := Sum[(-3)^(n-k) * Binomial[2*k, k] * Binomial[2*n+1, 2*k], {k, 0, n}]; Array[a, 23, 0] (* Amiram Eldar, Apr 29 2021 *)
-
N=40; x='x+O('x^N); Vec(sqrt(2/((1-2*x+49*x^2)*(1-7*x+sqrt(1-2*x+49*x^2)))))
-
{a(n) = sum(k=0, n, (-3)^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}
Showing 1-9 of 9 results.
Comments