A245925
G.f.: Sum_{n>=0} x^n*Sum_{k=0..n} (-1)^k * C(n,k)^2 * Sum_{j=0..k} C(k,j)^2 * x^j.
Original entry on oeis.org
1, -3, 25, -243, 2601, -29403, 344569, -4141875, 50737129, -630663003, 7930793025, -100681224075, 1288236350025, -16592960274075, 214939203248025, -2797935722568243, 36578032462268649, -480000660000226875, 6320012816203363489, -83462977778600141643, 1105193229806740453201
Offset: 0
G.f.: A(x) = 1 - 3*x^2 + 25*x^4 - 243*x^6 + 2601*x^8 - 29403*x^10 + ...
where the g.f. is given by the binomial series:
A(x) = 1 + x*(1 - (1+x)) + x^2*(1 - 2^2*(1+x) + (1+2^2*x+x^2))
+ x^3*(1 - 3^2*(1+x) + 3^2*(1+2^2*x+x^2) - (1+3^2*x+3^2*x^2+x^3))
+ x^4*(1 - 4^2*(1+x) + 6^2*(1+2^2*x+x^2) - 4^2*(1+3^2*x+3^2*x^2+x^3) + (1+4^2*x+6^2*x^2+4^2*x^3+x^4))
+ x^5*(1 - 5^2*(1+x) + 10^2*(1+2^2*x+x^2) - 10^2*(1+3^2*x+3^2*x^2+x^3) + 5^2*(1+4^2*x+6^2*x^2+4^2*x^3+x^4) - (1+5^2*x+10^2*x^2+10^2*x^3+5^2*x^4+x^5))
+ x^6*(1 - 6^2*(1+x) + 15^2*(1+2^2*x+x^2) - 20^2*(1+3^2*x+3^2*x^2+x^3) + 15^2*(1+4^2*x+6^2*x^2+4^2*x^3+x^4) - 6^2*(1+5^2*x+10^2*x^2+10^2*x^3+5^2*x^4+x^5) + (1+6^2*x+15^2*x^2+20^2*x^3+15^2*x^4+6^2*x^5+x^6)) + ...
in which the coefficients of odd powers of x vanish.
We can also express the g.f. by the binomial series identity:
A(x) = 1/(1+x) + x/(1+x)^3*(1-x)^2 + x^2/(1+x)^5*(1 - 2^2*x + x^2)^2
+ x^3/(1+x)^7*(1 - 3^2*x + 3^2*x^2 - x^3)^2
+ x^4/(1+x)^9*(1 - 4^2*x + 6^2*x^2 - 4^2*x^3 + x^4)^2
+ x^5/(1+x)^11*(1 - 5^2*x + 10^2*x^2 - 10^2*x^3 + 5^2*x^4 - x^5)^2
+ x^6/(1+x)^13*(1 - 6^2*x + 15^2*x^2 - 20^2*x^3 + 15^2*x^4 - 6^2*x^5 + x^6)^2 + ...
-
A245925 := n -> (-1)^n*add(binomial(2*(n-k), n-k)*binomial(2*n-k, k)^2, k=0..n); seq(A245925(n), n=0..20); # Peter Luschny, Aug 17 2014
-
Table[Sum[Sum[(-1)^(j+k) * Binomial[2*n - k, j + k]^2 * Binomial[j + k, k]^2, {j, 0, 2*n - 2*k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Aug 16 2014 after Paul D. Hanna *)
a[n_] := (-1)^n*HypergeometricPFQ[{-n, -n, n + 1, n + 1}, {1/2, 1, 1}, 1/4];
Table[a[n], {n, 0, 20}] (* Peter Luschny, Mar 14 2018 *)
-
/* By definition: */
{a(n)=polcoeff(sum(m=0, n, x^m*sum(k=0, m, (-1)^k*binomial(m, k)^2*sum(j=0, k, binomial(k, j)^2*x^j)+x*O(x^n))), n)}
for(n=0, 20, print1(a(2*n), ", "))
-
/* From alternate g.f.: */
{a(n)=local(A=1);A=sum(m=0,n,x^m/(1+x)^(2*m+1)*sum(k=0,m,binomial(m,k)^2*(-x)^k)^2+x*O(x^n));polcoeff(A,n)}
for(n=0,20,print1(a(2*n),", "))
-
/* From formula for a(n); printing only nonzero terms: */
{a(n)=sum(k=0, n\2, sum(j=0, n-2*k, (-1)^(j+k)*binomial(n-k, j+k)^2*binomial(j+k, k)^2))}
for(n=0, 20, print1(a(2*n), ", "))
-
/* From formula for a(n) (nonzero terms): */
{a(n)=sum(k=0, n, sum(j=0, 2*n-2*k, (-1)^(j+k)*binomial(2*n-k,j+k)^2*binomial(j+k, k)^2))}
for(n=0, 20, print1(a(n), ", "))
-
/* Formula for a(n), after Peter Luschny and Robert Israel: */
{a(n) = (-1)^n * sum(k=0,n, binomial(2*k, k) * binomial(n+k, n-k)^2)}
for(n=0, 20, print1(a(n), ", "))
-
/* Simpler formula for a(n): */
{a(n) = sum(k=0, n, (-1)^k * binomial(2*k, k)^2 * binomial(n+k, n-k) )}
for(n=0, 20, print1(a(n), ", "))
-
/* Using AGM: */
{a(n)=polcoeff( 1 / agm(1-x, sqrt(1+14*x+x^2 +x*O(x^n))), n)}
for(n=0,20,print1(a(n),", "))
-
A245925 = lambda n: (-1)^n*sum(binomial(2*(n-k), n-k)*binomial(2*n-k, k)^2 for k in (0..n))
[A245925(n) for n in range(21)] # Peter Luschny, Aug 17 2014
A245927
G.f.: sqrt( (1-x - sqrt(1-14*x+x^2)) / (6*x*(1-14*x+x^2)) ).
Original entry on oeis.org
1, 9, 99, 1175, 14499, 183195, 2351805, 30539241, 400000275, 5274560891, 69929215641, 931226954949, 12446852889901, 166888293332805, 2243683808486451, 30235162687458327, 408274269493595283, 5523024440001832875, 74834275541765522505, 1015429462194625633125
Offset: 0
G.f.: A(x) = 1 + 9*x + 99*x^2 + 1175*x^3 + 14499*x^4 + 183195*x^5 +... where
A(x)^2 = (1-x - sqrt(1-14*x+x^2)) / (6*x*(1-14*x+x^2)). Explicitly,
A(x)^2 = 1 + 18*x + 279*x^2 + 4132*x^3 + 59949*x^4 + 860022*x^5 + 12252547*x^6 + 173756232*x^7 + 2456093529*x^8 +...+ A245924(n)*x^n +...
-
seq(add( binomial(2*n+1,2*k)*binomial(2*k,k)*3^(n-k), k = 0..n),n = 0..20); # Peter Bala, Mar 17 2018
-
CoefficientList[Series[Sqrt[(1-x-Sqrt[1-14x+x^2])/(6x(1-14x+x^2))],{x,0,20}],x] (* Harvey P. Dale, Oct 23 2015 *)
a[n_] := (-1)^n Hypergeometric2F1[-n, n + 3/2, 1, 4];
Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 17 2018 *)
-
/* From definition: */
{a(n)=polcoeff( sqrt( (1-x - sqrt(1-14*x+x^2 +x^2*O(x^n))) / (6*x*(1-14*x+x^2 +x*O(x^n))) ), n)}
for(n=0, 20, print1(a(n), ", "))
-
/* From formula for a(n)^2: */
{a(n)=sqrtint((-1/3)*sum(k=0, 2*n+1, sum(j=0, 4*n-2*k+2, (-1)^(j+k)*binomial(4*n-k+2,j+k)^2*binomial(j+k, k)^2)))}
for(n=0, 20, print1(a(n), ", "))
A243946
Expansion of sqrt( (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)) ).
Original entry on oeis.org
1, 7, 91, 1345, 20995, 337877, 5544709, 92234527, 1549694195, 26237641045, 446925926881, 7650344197987, 131489964887341, 2267722252458475, 39224201631222475, 680160975405238145, 11820134678459908115, 205812328555924135045, 3589742656727603141425, 62707329988264214752675
Offset: 0
G.f.: A(x) = 1 + 7*x + 91*x^2 + 1345*x^3 + 20995*x^4 + 337877*x^5 + ...,
where A(x)^2 = (1+x + sqrt(1-18*x+x^2)) / (2*(1-18*x+x^2)).
-
seq(add(binomial(n,k)*binomial(n+k,k)*binomial(2*n+2*k,n+k), k = 0..n)/binomial(2*n,n), n = 0..20); # Peter Bala, Mar 14 2018
-
a[n_] := Hypergeometric2F1[-n, n + 1/2, 1, -4];
Table[a[n], {n, 0, 19}] (* Peter Luschny, Mar 16 2018 *)
CoefficientList[Series[Sqrt[(1+x+Sqrt[1-18x+x^2])/(2(1-18x+x^2))],{x,0,20}],x] (* Harvey P. Dale, Dec 26 2019 *)
a[n_] := Sum[(5^k Gamma[2 n + 1])/(Gamma[2 k + 1]*Gamma[n - k + 1]^2), {k, 0, n}];
Flatten[Table[a[n], {n, 0, 19}]] (* Detlef Meya, May 22 2024 *)
-
/* From definition: */
{a(n)=polcoeff( sqrt( (1+x + sqrt(1-18*x+x^2 +x*O(x^n))) / (2*(1-18*x+x^2 +x*O(x^n))) ), n)}
for(n=0, 20, print1(a(n), ", "))
-
/* From a(n) = sqrt( A243945(2*n) ): */
{a(n)=sqrtint( sum(k=0, 2*n, binomial(2*k, k)^2*binomial(2*n+k, 2*n-k)) )}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 5^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))} \\ Seiichi Manyama, Aug 25 2020
-
from math import comb
def A243946(n): return sum(5**(n-k)*comb(m:=k<<1,k)*comb(n<<1,m) for k in range(n+1)) # Chai Wah Wu, Mar 23 2023
A337389
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of sqrt((1+(k-4)*x+sqrt(1-2*(k+4)*x+((k-4)*x)^2)) / (2 * (1-2*(k+4)*x+((k-4)*x)^2))).
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 19, 20, 1, 5, 34, 141, 70, 1, 6, 51, 328, 1107, 252, 1, 7, 70, 587, 3334, 8953, 924, 1, 8, 91, 924, 7123, 34904, 73789, 3432, 1, 9, 114, 1345, 12870, 89055, 372436, 616227, 12870, 1, 10, 139, 1856, 20995, 184756, 1135005, 4027216, 5196627, 48620
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, ...
6, 19, 34, 51, 70, 91, ...
20, 141, 328, 587, 924, 1345, ...
70, 1107, 3334, 7123, 12870, 20995, ...
252, 8953, 34904, 89055, 184756, 337877, ...
-
T[n_, k_] := Sum[If[k == 0, Boole[n == j], k^(n - j)] * Binomial[2*j, j] * Binomial[2*n, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 25 2020 *)
-
{T(n, k) = sum(j=0, n, k^(n-j)*binomial(2*j, j)*binomial(2*n, 2*j))}
A300946
Rectangular array A(n, k) = (-1)^k*hypergeom([-k, k + n/2 - 1/2], [1], 4) with row n >= 0 and k >= 0, read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 3, 19, 1, 5, 33, 239, 1, 7, 51, 387, 3011, 1, 9, 73, 587, 4737, 38435, 1, 11, 99, 847, 7123, 59523, 496365, 1, 13, 129, 1175, 10321, 89055, 761121, 6470385, 1, 15, 163, 1579, 14499, 129367, 1135005, 9854211, 84975315
Offset: 0
Array starts:
[0] 1, 1, 19, 239, 3011, 38435, 496365, 6470385, ... [A299864]
[1] 1, 3, 33, 387, 4737, 59523, 761121, 9854211, ... [A299507]
[2] 1, 5, 51, 587, 7123, 89055, 1135005, 14660805, ... [A245926]
[3] 1, 7, 73, 847, 10321, 129367, 1651609, 21360031, ... [A084768]
[4] 1, 9, 99, 1175, 14499, 183195, 2351805, 30539241, ... [A245927]
[5] 1, 11, 129, 1579, 19841, 253707, 3284737, 42924203, ...
[6] 1, 13, 163, 2067, 26547, 344535, 4508877, 59402397, ...
-
Arow[n_, len_] := Table[(-1)^k Hypergeometric2F1[-k, k + n/2 - 1/2, 1, 4], {k, 0, len}]; Table[Print[Arow[n, 7]], {n, 0, 6}];
A337422
Expansion of sqrt((1-7*x+sqrt(1-2*x+49*x^2)) / (2 * (1-2*x+49*x^2))).
Original entry on oeis.org
1, -1, -21, -7, 739, 1629, -26859, -118329, 922419, 6886397, -27414191, -358533429, 539620621, 17229485987, 8782716411, -769962297447, -1897237412973, 31786556599917, 149610560086113, -1182765435388341, -9268347520205991, 37049669347266471, 505738623506722431
Offset: 0
-
a[n_] := Sum[(-3)^(n - k) * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 23, 0] (* Amiram Eldar, Aug 27 2020 *)
-
N=40; x='x+O('x^N); Vec(sqrt((1-7*x+sqrt(1-2*x+49*x^2))/(2*(1-2*x+49*x^2))))
-
{a(n) = sum(k=0, n, (-3)^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}
A245923
G.f.: (1-x + sqrt(1 - 14*x + x^2)) / (2*(1 - 14*x + x^2)).
Original entry on oeis.org
1, 10, 127, 1684, 22717, 309214, 4231675, 58117672, 800173945, 11037041074, 152448280183, 2107959984316, 29172777600565, 404016491894662, 5598523988234227, 77617624970307664, 1076533162210721521, 14936507761662251866, 207302489038473478255, 2877906561872502533860
Offset: 0
G.f.: A(x) = 1 + 10*x + 127*x^2 + 1684*x^3 + 22717*x^4 + 309214*x^5 +...
-
CoefficientList[Series[(1 - x + Sqrt[1 - 14*x + x^2])/(2*(1 - 14*x + x^2)), {x,0,50}], x] (* G. C. Greubel, Feb 14 2017 *)
-
{a(n)=polcoeff( (1-x + sqrt(1-14*x+x^2 +x*O(x^n))) / (2*(1-14*x+x^2 +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
A299507
a(n) = (-1)^n*hypergeom([-n, n], [1], 4).
Original entry on oeis.org
1, 3, 33, 387, 4737, 59523, 761121, 9854211, 128772609, 1694927619, 22437369633, 298419470979, 3984500221569, 53376363001731, 717044895641121, 9656091923587587, 130310873022310401, 1761872309456567811, 23861153881099854369, 323634591584064809859
Offset: 0
-
seq(simplify( (-1)^n*hypergeom([-n, n], [1], 4)), n = 0..20); # Peter Bala, Apr 18 2024
-
a[n_] := (-1)^n Hypergeometric2F1[-n, n, 1, 4]; Table[a[n], {n, 0, 19}]
A299864
a(n) = (-1)^n*hypergeom([-n, n - 1/2], [1], 4).
Original entry on oeis.org
1, 1, 19, 239, 3011, 38435, 496365, 6470385, 84975315, 1122708899, 14906800361, 198740733581, 2658870294349, 35677678567549, 479965685669059, 6471364940381007, 87425255326277907, 1183139999323074963, 16036589185819644633, 217668383345249016045
Offset: 0
-
seq((-1)^n*orthopoly[P](n,0,-3/2,-7),n=0..100); # Robert Israel, Mar 21 2018
-
a[n_] := (-1)^n Hypergeometric2F1[-n, n - 1/2, 1, 4]; Table[a[n], {n, 0, 19}]
Showing 1-9 of 9 results.
Comments