A337389
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of sqrt((1+(k-4)*x+sqrt(1-2*(k+4)*x+((k-4)*x)^2)) / (2 * (1-2*(k+4)*x+((k-4)*x)^2))).
Original entry on oeis.org
1, 1, 2, 1, 3, 6, 1, 4, 19, 20, 1, 5, 34, 141, 70, 1, 6, 51, 328, 1107, 252, 1, 7, 70, 587, 3334, 8953, 924, 1, 8, 91, 924, 7123, 34904, 73789, 3432, 1, 9, 114, 1345, 12870, 89055, 372436, 616227, 12870, 1, 10, 139, 1856, 20995, 184756, 1135005, 4027216, 5196627, 48620
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, ...
6, 19, 34, 51, 70, 91, ...
20, 141, 328, 587, 924, 1345, ...
70, 1107, 3334, 7123, 12870, 20995, ...
252, 8953, 34904, 89055, 184756, 337877, ...
-
T[n_, k_] := Sum[If[k == 0, Boole[n == j], k^(n - j)] * Binomial[2*j, j] * Binomial[2*n, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 25 2020 *)
-
{T(n, k) = sum(j=0, n, k^(n-j)*binomial(2*j, j)*binomial(2*n, 2*j))}
A337464
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of sqrt(2 / ( (1+2*(k-4)*x+((k+4)*x)^2) * (1-(k+4)*x+sqrt(1+2*(k-4)*x+((k+4)*x)^2)) )).
Original entry on oeis.org
1, 1, 6, 1, 5, 30, 1, 4, 11, 140, 1, 3, -6, -29, 630, 1, 2, -21, -120, -365, 2772, 1, 1, -34, -139, -266, -1409, 12012, 1, 0, -45, -92, 531, 2520, -155, 51480, 1, -1, -54, 15, 1654, 6489, 17380, 29485, 218790, 1, -2, -61, 176, 2755, 4828, -9723, -13104, 170035, 923780
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
6, 5, 4, 3, 2, 1, ...
30, 11, -6, -21, -34, -45, ...
140, -29, -120, -139, -92, 15, ...
630, -365, -266, 531, 1654, 2755, ...
2772, -1409, 2520, 6489, 4828, -5853, ...
-
T[n_, k_] := Sum[If[k == n-j == 0, 1, (-k)^(n-j)] * Binomial[2*j, j] * Binomial[2*n+1, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 29 2021 *)
-
{T(n, k) = sum(j=0, n, (-k)^(n-j)*binomial(2*j, j)*binomial(2*n+1, 2*j))}
A337370
Expansion of sqrt(2 / ( (1-12*x+4*x^2) * (1-2*x+sqrt(1-12*x+4*x^2)) )).
Original entry on oeis.org
1, 8, 74, 736, 7606, 80464, 864772, 9400192, 103061158, 1137528688, 12623082284, 140697113792, 1574005263676, 17663830073504, 198760191043784, 2241743315230208, 25335473017856774, 286850379192127664, 3252960763923781276, 36942512756224955456, 420084161646913792724
Offset: 0
-
Rec:= 8*(2*n - 3)*(n - 2)*a(n - 3) - 4*(10*n^2 - 35*n + 27)*a(n - 2) - 2*(10*n^2 + 5*n - 3)*a(n - 1) + (2*n + 1)*n*a(n) = 0:
f:= gfun:-rectoproc({Rec,a(0)=1,a(1)=8,a(2)=74},a(n),remember):
map(f, [$0..30]); # Robert Israel, Aug 27 2020
-
a[n_] := Sum[2^(n - k) * Binomial[2*k, k] * Binomial[2*n + 1, 2*k], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, Aug 25 2020 *)
-
N=40; x='x+O('x^N); Vec(sqrt(2/((1-12*x+4*x^2)*(1-2*x+sqrt(1-12*x+4*x^2)))))
-
{a(n) = sum(k=0, n, 2^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}
A337387
a(n) = Sum_{k=0..n} n^(n-k) * binomial(2*k,k) * binomial(2*n+1,2*k).
Original entry on oeis.org
1, 7, 74, 1175, 24310, 610897, 17920356, 598099077, 22305598630, 917158184525, 41148369048876, 1997720107411613, 104241356841544636, 5813083330109559415, 344783011379207286920, 21660231928192698604995, 1436143861200146476260102, 100179915387243084700279349
Offset: 0
-
a[n_] := Sum[If[n == 0, Boole[n == k], n^(n - k)] * Binomial[2*k, k] * Binomial[2*n + 1, 2*k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Aug 25 2020 *)
-
{a(n) = sum(k=0, n, n^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}
Showing 1-4 of 4 results.