cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A337369 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of sqrt(2 / ( (1-2*(k+4)*x+((k-4)*x)^2) * (1+(k-4)*x+sqrt(1-2*(k+4)*x+((k-4)*x)^2)) )).

Original entry on oeis.org

1, 1, 6, 1, 7, 30, 1, 8, 51, 140, 1, 9, 74, 393, 630, 1, 10, 99, 736, 3139, 2772, 1, 11, 126, 1175, 7606, 25653, 12012, 1, 12, 155, 1716, 14499, 80464, 212941, 51480, 1, 13, 186, 2365, 24310, 183195, 864772, 1787607, 218790, 1, 14, 219, 3128, 37555, 352716, 2351805, 9400192, 15134931, 923780
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2020

Keywords

Examples

			Square array begins:
     1,     1,     1,      1,      1,      1, ...
     6,     7,     8,      9,     10,     11, ...
    30,    51,    74,     99,    126,    155, ...
   140,   393,   736,   1175,   1716,   2365, ...
   630,  3139,  7606,  14499,  24310,  37555, ...
  2772, 25653, 80464, 183195, 352716, 610897, ...
		

Crossrefs

Columns k=0..5 give A002457, A273055, A337370, A245927, A002458, A243947.
Main diagonal gives A337387.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == 0, Boole[n == j], k^(n - j)] * Binomial[2*j, j] * Binomial[2*n + 1, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 25 2020 *)
  • PARI
    {T(n, k) = sum(j=0, n, k^(n-j)*binomial(2*j, j)*binomial(2*n+1, 2*j))}

Formula

T(n,k) = Sum_{j=0..n} k^(n-j) * binomial(2*j,j) * binomial(2*n+1,2*j).
T(0,k) = 1, T(1,k) = k+6 and n * (2*n+1) * (4*n-3) * T(n,k) = (4*n-1) * (4*(k+4)*n^2-2*(k+4)*n-k-2) * T(n-1,k) - (k-4)^2 * (n-1) * (2*n-1) * (4*n+1) * T(n-2,k) for n > 1. - Seiichi Manyama, Aug 29 2020
For fixed k > 0, T(n,k) ~ (2 + sqrt(k))^(2*n + 3/2) / sqrt(8*k*Pi*n). - Vaclav Kotesovec, Aug 31 2020

A337388 a(n) = Sum_{k=0..n} n^(n-k) * binomial(2*k,k) * binomial(2*n,2*k).

Original entry on oeis.org

1, 3, 34, 587, 12870, 337877, 10262004, 352436961, 13465074758, 565280386625, 25826066397756, 1274138666796217, 67446164001827356, 3810171540686207283, 228658931521878071080, 14520123059677034441895, 972281769469377542763078, 68443768336740463562683177
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2020

Keywords

Crossrefs

Main diagonal of A337389.
Cf. A337387.

Programs

  • Mathematica
    a[n_] := Sum[If[n == 0, Boole[n == k], n^(n - k)] * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Aug 25 2020 *)
  • PARI
    {a(n) = sum(k=0, n, n^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}

Formula

From Vaclav Kotesovec, Aug 31 2020: (Start)
a(n) ~ (2 + sqrt(n))^(2*n + 1/2) / sqrt(8*Pi*n).
a(n) ~ exp(4*sqrt(n) - 4) * n^(n - 1/4) / sqrt(8*Pi) * (1 + 19/(3*sqrt(n)) + 199/(18*n)). (End)

A337465 a(n) = Sum_{k=0..n} (-n)^(n-k) * binomial(2*k,k) * binomial(2*n+1,2*k).

Original entry on oeis.org

1, 5, -6, -139, 1654, -5853, -196860, 6258751, -112580442, 985287863, 26443436876, -1897380617625, 72596047613116, -2086036395460171, 39493340495025864, 304974352009838745, -85532651616832374010, 6040114369000387188975, -321378391411642082323524, 14224299551865677212271567
Offset: 0

Views

Author

Seiichi Manyama, Aug 28 2020

Keywords

Crossrefs

Main diagonal of A337464.

Programs

  • Mathematica
    a[n_] := Sum[If[n == n - k == 0, 1, (-n)^(n-k)] * Binomial[2*k, k] * Binomial[2*n+1, 2*k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Apr 29 2021 *)
  • PARI
    {a(n) = sum(k=0, n, (-n)^(n-k)*binomial(2*k, k)*binomial(2*n+1, 2*k))}
Showing 1-3 of 3 results.