cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A300945 Rectangular array A(n, k) = hypergeom([-k, k + n/2 - 1], [1], -4) with row n >= 0 and k >= 0, read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 25, 1, 5, 43, 425, 1, 7, 65, 661, 7025, 1, 9, 91, 965, 10515, 116625, 1, 11, 121, 1345, 15105, 171097, 1951625, 1, 13, 155, 1809, 20995, 243525, 2828101, 32903225, 1, 15, 193, 2365, 28401, 337877, 4001345, 47284251, 558265825
Offset: 0

Views

Author

Peter Luschny, Mar 16 2018

Keywords

Examples

			[0] 1,  1,  25,  425,  7025, 116625,  1951625,  32903225, ... [A299845]
[1] 1,  3,  43,  661, 10515, 171097,  2828101,  47284251, ... [A299506]
[2] 1,  5,  65,  965, 15105, 243525,  4001345,  66622085, ...
[3] 1,  7,  91, 1345, 20995, 337877,  5544709,  92234527, ... [A243946]
[4] 1,  9, 121, 1809, 28401, 458649,  7544041, 125700129, ... [A084769]
[5] 1, 11, 155, 2365, 37555, 610897, 10098997, 168894355, ... [A243947]
[6] 1, 13, 193, 3021, 48705, 800269, 13324417, 224028877, ...
		

Crossrefs

Programs

  • Mathematica
    Arow[n_, len_] := Table[Hypergeometric2F1[-k, k + n/2 - 1, 1, -4], {k, 0, len}];
    Table[Print[Arow[n, 7]], {n, 0, 6}];
    T[n_, k_] := If[k==0, 1, 4^k*Sum[(5/4)^j*Binomial[k, j]*Binomial[k - 2 + ((n - k)/2), j - 2 + ((n - k)/2)] ,{j, 0, n}]]; Flatten[Table[T[n, k],{n, 0, 8}, {k, 0, n}]] (* Detlef Meya, May 28 2024 *)

Formula

T(n, k) = if k = 0 then 1, otherwise 4^k*Sum_{j=0..n} (5/4)^j * binomial(k, j) * binomial(k - 2 + ((n - k)/2), j - 2 + ((n - k)/2)). - Detlef Meya, May 28 2024

A299506 a(n) = hypergeom([-n, n - 1/2], [1], -4).

Original entry on oeis.org

1, 3, 43, 661, 10515, 171097, 2828101, 47284251, 797456947, 13540982665, 231188344401, 3964874384863, 68252711769373, 1178662654873191, 20409993947488075, 354260920943874245, 6161735337225790035, 107368528677807960185, 1873946997372948997345, 32754419073618998202975
Offset: 0

Views

Author

Peter Luschny, Mar 16 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Hypergeometric2F1[-n, n - 1/2, 1, -4]; Table[a[n], {n, 0, 19}]
    a[n_] := 4^n*Sum[(5/4)^k*(Gamma[n + 1]*Gamma[n - 1/2])/(Gamma[k + 1]*Gamma[n - k + 1]^2*Gamma[k - 1/2]),{k,0,n}]; Flatten[Table[a[n],{n,0,19}]] (* Detlef Meya, May 22 2024 *)

Formula

From Vaclav Kotesovec, Jul 05 2018: (Start)
Recurrence: n*(2*n - 3)*(4*n - 7)*a(n) = 9*(4*n - 5)*(4*n^2 - 10*n + 5)*a(n-1) - (n-1)*(2*n - 5)*(4*n - 3)*a(n-2).
a(n) ~ 2^(-3/2) * sqrt(5) * phi^(6*n - 3/2) / sqrt(Pi*n), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. (End)
a(n) = 4^n*Sum_{k=0..n} (5/4)^k*(Gamma(n + 1)*Gamma(n - 1/2))/(Gamma(k + 1)*Gamma(n - k + 1)^2*Gamma(k - 1/2)). - Detlef Meya, May 22 2024
Showing 1-2 of 2 results.