cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A331792 Expansion of ((1 - 4*x)/sqrt(1 - 8*x + 4*x^2) - 1)/(6*x^2).

Original entry on oeis.org

1, 8, 57, 400, 2810, 19824, 140497, 999968, 7143966, 51206320, 368094122, 2652720096, 19159794004, 138658606688, 1005231020865, 7299082678336, 53074479789878, 386419850997552, 2816685368479342, 20553133273532000, 150120362670452076
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2020

Keywords

Crossrefs

Column 4 of A331791.

Programs

  • Mathematica
    a[n_] := Sum[3^k * Binomial[n + 1, k] * Binomial[n + 1, k + 1], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, May 05 2021 *)
  • PARI
    N=20; x='x+O('x^N); Vec(((1-4*x)/sqrt(1-8*x+4*x^2)-1)/(6*x^2))
    
  • PARI
    {a(n) = sum(k=0, n, 3^k*binomial(n+1, k)*binomial(n+1, k+1))}

Formula

a(n) = (2/(n+2)) * A331515(n) = Sum_{k=0..n} 3^k * binomial(n+1,k) * binomial(n+1,k+1).
n * (n+2) * a(n) = (n+1) * (4 * (2*n+1) * a(n-1) - 4 * n * a(n-2)) for n>1.
a(n) ~ 2^(n + 1/2) * (2 + sqrt(3))^(n + 3/2) / (3^(3/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 26 2020
a(n) = Sum_{k=0..floor(n/2)} 3^k * 4^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k). - Seiichi Manyama, Aug 24 2025
From Seiichi Manyama, Aug 27 2025: (Start)
a(n) = [x^n] (1+4*x+3*x^2)^(n+1).
E.g.f.: exp(4*x) * BesselI(1, 2*sqrt(3)*x) / sqrt(3), with offset 1. (End)

A331793 Expansion of ((1 - 5*x)/sqrt(1 - 10*x + 9*x^2) - 1)/(8*x^2).

Original entry on oeis.org

1, 10, 87, 740, 6285, 53550, 458115, 3934600, 33913881, 293244050, 2542684463, 22101612780, 192530903461, 1680415209270, 14692052109915, 128653303453200, 1128147127156785, 9905115333850650, 87066787614156807, 766127762539955700, 6747880819438628541
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2020

Keywords

Crossrefs

Column 5 of A331791.
Cf. A331516.

Programs

  • Mathematica
    a[n_] := Sum[4^k * Binomial[n + 1, k] * Binomial[n + 1, k + 1], {k, 0, n}]; Array[a, 21, 0] (* Amiram Eldar, May 05 2021 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(((1-5*x)/sqrt(1-10*x+9*x^2)-1)/(8*x^2))
    
  • PARI
    a(n) = sum(k=0, n, 4^k*binomial(n+1, k)*binomial(n+1, k+1));

Formula

a(n) = (2/(n+2)) * A331516(n) = Sum_{k=0..n} 4^k * binomial(n+1,k) * binomial(n+1,k+1).
n * (n+2) * a(n) = (n+1) * (5 * (2*n+1) * a(n-1) - 9 * n * a(n-2)) for n>1.
a(n) ~ 3^(2*n + 3) / (2^(5/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 26 2020
From Seiichi Manyama, Aug 23 2025: (Start)
a(n) = Sum_{k=0..floor(n/2)} 4^k * 5^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+1,k+1) * binomial(2*k+2,k+2). (End)
From Seiichi Manyama, Aug 25 2025: (Start)
a(n) = [x^n] (1+5*x+4*x^2)^(n+1).
E.g.f.: exp(5*x) * BesselI(1, 4*x) / 2, with offset 1. (End)

A331794 a(n) = Sum_{k=0..n} n^k * binomial(n+1,k) * binomial(n+1,k+1).

Original entry on oeis.org

1, 4, 33, 400, 6285, 120456, 2714173, 70129984, 2040655401, 65956468600, 2342384363561, 90607200956064, 3789863084012629, 170370561866229648, 8188781210421259365, 418938023982360898816, 22724122083014879989905, 1302374806940392958470104
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[n^k * Binomial[n+1,k] * Binomial[n+1,k+1], {k,0,n}], {n,1,20}]}] (* Vaclav Kotesovec, Jan 26 2020 *)
    Table[(n+1) * Hypergeometric2F1[-1 - n, -n, 2, n], {n, 0, 20}] (* Vaclav Kotesovec, Jan 26 2020 *)
  • PARI
    a(n) = sum(k=0, n, n^k*binomial(n+1, k)*binomial(n+1, k+1));
    
  • PARI
    a(n) = polcoef(2/(1-2*(n+1)*x+((n-1)*x)^2+(1-(n+1)*x)*sqrt(1-2*(n+1)*x+((n-1)*x)^2)), n);

Formula

a(n) = [x^n] 2/(1 - 2*(n+1)*x + ((n-1)*x)^2 + (1 - (n+1)*x) * sqrt(1 - 2*(n+1)*x + ((n-1)*x)^2)).
a(n) = (n+1) * 2F1(-1 - n, -n; 2; n), where 2F1 is the hypergeometric function. - Vaclav Kotesovec, Jan 26 2020
a(n) = Sum_{k=0..floor(n/2)} n^k * (n+1)^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k). - Seiichi Manyama, Aug 24 2025

A331795 a(n) = Sum_{k=0..n} (-n)^k * binomial(n+1,k) * binomial(n+1,k+1).

Original entry on oeis.org

1, 0, -3, 40, -515, 7056, -102935, 1554288, -22775319, 265497760, 586651461, -230587852560, 13426823564869, -637734419560224, 28594259589697425, -1264238490602458784, 56015489395280490385, -2499557487903373341888, 112150411888789509887053
Offset: 0

Views

Author

Seiichi Manyama, Jan 26 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[(-1)^k * n^k * Binomial[n+1,k] * Binomial[n+1,k+1], {k,0,n}], {n,1,20}]}] (* Vaclav Kotesovec, Jan 26 2020 *)
    Table[(n+1) * Hypergeometric2F1[-1 - n, -n, 2, -n], {n, 0, 20}] (* Vaclav Kotesovec, Jan 26 2020 *)
  • PARI
    a(n) = sum(k=0, n, (-n)^k*binomial(n+1, k)*binomial(n+1, k+1));
    
  • PARI
    a(n) = polcoef(2/(1+2*(n-1)*x+((n+1)*x)^2+(1+(n-1)*x)*sqrt(1+2*(n-1)*x+((n+1)*x)^2)), n);

Formula

a(n) = [x^n] 2/(1 + 2*(n-1)*x + ((n+1)*x)^2 + (1 + (n-1)*x) * sqrt(1 + 2*(n-1)*x + ((n+1)*x)^2)).
a(n) = (n+1) * 2F1(-1 - n, -n; 2; -n), where 2F1 is the hypergeometric function. - Vaclav Kotesovec, Jan 26 2020
a(n) = Sum_{k=0..floor(n/2)} (-n)^k * (-n+1)^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k). - Seiichi Manyama, Aug 24 2025
Showing 1-4 of 4 results.