A331791 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 2/(1 - 2*k*x + ((k-2)*x)^2 + (1 - k*x) * sqrt(1 - 2*k*x + ((k-2)*x)^2)).
1, 1, 0, 1, 2, -3, 1, 4, 3, 0, 1, 6, 15, 4, 10, 1, 8, 33, 56, 5, 0, 1, 10, 57, 180, 210, 6, -35, 1, 12, 87, 400, 985, 792, 7, 0, 1, 14, 123, 740, 2810, 5418, 3003, 8, 126, 1, 16, 165, 1224, 6285, 19824, 29953, 11440, 9, 0, 1, 18, 213, 1876, 12130, 53550, 140497, 166344, 43758, 10, -462
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 2, 4, 6, 8, 10, ... -3, 3, 15, 33, 57, 87, ... 0, 4, 56, 180, 400, 740, ... 10, 5, 210, 985, 2810, 6285, ... 0, 6, 792, 5418, 19824, 53550, ...
Links
- Seiichi Manyama, Antidiagonals n = 0..139, flattened
Crossrefs
Programs
-
Mathematica
T[n_, k_] := Sum[If[k==1 && j==0, 1, (k-1)^j] * Binomial[n + 1, j] * Binomial[n + 1, j + 1], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 05 2021 *)
Formula
T(n,k) = Sum_{j=0..n} (k-1)^j * binomial(n+1,j) * binomial(n+1,j+1).
n * (n+2) * T(n,k) = (n+1) * (k * (2*n+1) * T(n-1,k) - (k-2)^2 * n * T(n-2,k)) for n > 1.
T(n,k) = Sum_{j=0..floor(n/2)} (k-1)^j * k^(n-2*j) * binomial(n+1,n-2*j) * binomial(2*j+1,j). - Seiichi Manyama, Aug 24 2025
From Seiichi Manyama, Aug 27 2025: (Start)
T(n,k) = [x^n] (1+k*x+(k-1)*x^2)^(n+1).
For k != 1, e.g.f. of column k: exp(k*x) * BesselI(1, 2*sqrt(k-1)*x) / sqrt(k-1), with offset 1. (End)