cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387307 a(n) = Sum_{k=0..n} 2^k * binomial(n+2,k+2) * binomial(2*k+4,k+4).

Original entry on oeis.org

1, 15, 166, 1650, 15615, 144025, 1309084, 11793780, 105663885, 943298675, 8401596258, 74716379270, 663813240363, 5894026429725, 52314876771960, 464261939106600, 4119843554861913, 36560929542771735, 324489293583792990, 2880380080564191450, 25572856871556696471
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^k * Binomial(n+2,k+2) * Binomial(2*k+4,k+4): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 30 2025
  • Mathematica
    Table[Sum[2^k*Binomial[n+2,k+2]*Binomial[2*k+4,k+4],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(n+2, k+2)*binomial(2*k+4, k+4));
    

Formula

n*(n+4)*a(n) = (n+2) * (5*(2*n+3)*a(n-1) - 9*(n+1)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 4^k * 5^(n-2*k) * binomial(n+2,n-2*k) * binomial(2*k+2,k).
a(n) = [x^n] (1+5*x+4*x^2)^(n+2).
E.g.f.: exp(5*x) * BesselI(2, 4*x) / 4, with offset 2.

A387314 Expansion of 1/((1-x) * (1-9*x))^(7/2).

Original entry on oeis.org

1, 35, 756, 13020, 196266, 2709630, 35148036, 435203340, 5198003811, 60326090825, 683903083864, 7603632658440, 83157463636884, 896739874849980, 9553010933452824, 100690915725416520, 1051393771423717029, 10887352006705432335, 111903813927216900204, 1142507997942276850500
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2025

Keywords

Crossrefs

Cf. A387308.

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/((1-x) * (1-9*x))^(7/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-9*x))^(7/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/((1-x)*(1-9*x))^(7/2))
    

Formula

n*a(n) = (10*n+25)*a(n-1) - 9*(n+5)*a(n-2) for n > 1.
a(n) = (-1)^n * Sum_{k=0..n} 9^k * binomial(-7/2,k) * binomial(-7/2,n-k).
a(n) = Sum_{k=0..n} (-8)^k * binomial(-7/2,k) * binomial(n+6,n-k).
a(n) = Sum_{k=0..n} 8^k * 9^(n-k) * binomial(-7/2,k) * binomial(n+6,n-k).
a(n) = (binomial(n+6,3)/20) * A387308(n).
a(n) = (-1)^n * Sum_{k=0..n} 10^k * (9/10)^(n-k) * binomial(-7/2,k) * binomial(k,n-k).
Showing 1-2 of 2 results.