cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387308 a(n) = Sum_{k=0..n} 2^k * binomial(n+3,k+3) * binomial(2*k+6,k+6).

Original entry on oeis.org

1, 20, 270, 3100, 32711, 328440, 3195276, 30433800, 285604605, 2651696300, 24425110138, 223636254660, 2038173128355, 18508562948400, 167596683043032, 1514149108652880, 13654464563944377, 122951462526317700, 1105768912324277670, 9934852156019798700, 89186900539764803391
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[2^k * Binomial(n+3,k+3) * Binomial(2*k+6,k+6): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 30 2025
  • Mathematica
    Table[Sum[2^k*Binomial[n+3,k+3]*Binomial[2*k+6,k+6],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^k*binomial(n+3, k+3)*binomial(2*k+6, k+6));
    

Formula

n*(n+6)*a(n) = (n+3) * (5*(2*n+5)*a(n-1) - 9*(n+2)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 4^k * 5^(n-2*k) * binomial(n+3,n-2*k) * binomial(2*k+3,k).
a(n) = [x^n] (1+5*x+4*x^2)^(n+3).
E.g.f.: exp(5*x) * BesselI(3, 4*x) / 8, with offset 3.

A387313 Expansion of 1/((1-x) * (1-9*x))^(5/2).

Original entry on oeis.org

1, 25, 415, 5775, 72870, 864150, 9818130, 108109650, 1162302735, 12262882775, 127424209913, 1307536637225, 13276264807260, 133597932407100, 1334029357684980, 13231465264538100, 130461712570627245, 1279632533997010725, 12492837802976030115, 121456026730456739475
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 34); f := 1/((1-x) * (1-9*x))^(5/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 28 2025
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-9*x))^(5/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 28 2025 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(1/((1-x)*(1-9*x))^(5/2))
    

Formula

n*a(n) = (10*n+15)*a(n-1) - 9*(n+3)*a(n-2) for n > 1.
a(n) = (-1)^n * Sum_{k=0..n} 9^k * binomial(-5/2,k) * binomial(-5/2,n-k).
a(n) = Sum_{k=0..n} (-8)^k * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = Sum_{k=0..n} 8^k * 9^(n-k) * binomial(-5/2,k) * binomial(n+4,n-k).
a(n) = (binomial(n+4,2)/6) * A387307(n).
a(n) = (-1)^n * Sum_{k=0..n} 10^k * (9/10)^(n-k) * binomial(-5/2,k) * binomial(k,n-k).
Showing 1-2 of 2 results.