cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A387310 a(n) = Sum_{k=0..n} 3^k * binomial(n+2,k+2) * binomial(2*k+4,k+4).

Original entry on oeis.org

1, 21, 330, 4690, 63690, 844662, 11052496, 143462592, 1852852365, 23853938185, 306473670822, 3932435239278, 50417223635233, 646085510253645, 8277409340709240, 106037993391958936, 1358437551566242347, 17404555385537336583, 223025734596708637750, 2858460480570547144110
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^k * Binomial(n+2,k+2) * Binomial(2*k+4,k+4): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 29 2025
  • Mathematica
    Table[Sum[3^k * Binomial[n+2,k+2]*Binomial[2*k+4, k+4],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 29 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^k*binomial(n+2, k+2)*binomial(2*k+4, k+4));
    

Formula

n*(n+4)*a(n) = (n+2) * (7*(2*n+3)*a(n-1) - 13*(n+1)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 9^k * 7^(n-2*k) * binomial(n+2,n-2*k) * binomial(2*k+2,k).
a(n) = [x^n] (1+7*x+9*x^2)^(n+2).
E.g.f.: exp(7*x) * BesselI(2, 6*x) / 9, with offset 2.

A387311 a(n) = Sum_{k=0..n} 3^k * binomial(n+3,k+3) * binomial(2*k+6,k+6).

Original entry on oeis.org

1, 28, 535, 8750, 132041, 1900808, 26557986, 363716220, 4912064355, 65673861484, 871539802276, 11501122783696, 151118588963615, 1978948331160080, 25846338449608184, 336857447941007280, 4382848524348689883, 56947000383926523780, 739095412895790074215, 9583718189242229830798
Offset: 0

Views

Author

Seiichi Manyama, Aug 25 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[3^k * Binomial(n+3,k+3) * Binomial(2*k+6,k+6): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 29 2025
  • Mathematica
    Table[Sum[3^k * Binomial[n+3,k+3]*Binomial[2*k+6, k+6],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 29 2025 *)
  • PARI
    a(n) = sum(k=0, n, 3^k*binomial(n+3, k+3)*binomial(2*k+6, k+6));
    

Formula

n*(n+6)*a(n) = (n+3) * (7*(2*n+5)*a(n-1) - 13*(n+2)*a(n-2)) for n > 1.
a(n) = Sum_{k=0..floor(n/2)} 9^k * 7^(n-2*k) * binomial(n+3,n-2*k) * binomial(2*k+3,k).
a(n) = [x^n] (1+7*x+9*x^2)^(n+3).
E.g.f.: exp(7*x) * BesselI(3, 6*x) / 27, with offset 3.
Showing 1-2 of 2 results.