cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A026375 a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k).

Original entry on oeis.org

1, 3, 11, 45, 195, 873, 3989, 18483, 86515, 408105, 1936881, 9238023, 44241261, 212601015, 1024642875, 4950790605, 23973456915, 116312293305, 565280386625, 2751474553575, 13411044301945, 65448142561035, 319756851757695
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=0; also a(n)=T(2n,n).
Partial sums of A085362. Number of bilateral Schroeder paths (i.e., lattice paths consisting of steps U=(1,1), D=(1,-1) and H=(2,0)) from (0,0) to (2n,0) and with no H-steps at odd (positive or negative) levels. Example: a(2)=11 because we have HUD, UDH, UDUD, UUDD, UDDU, their reflections in the x-axis and HH. - Emeric Deutsch, Jan 30 2004
Largest coefficient of (1+3*x+x^2)^n; row sums of triangle in A124733. - Philippe Deléham, Oct 02 2007
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in three colors. - N-E. Fahssi, Feb 05 2008
Equals INVERT transform of A109033: (1, 2, 6, 22, 88, ...), INVERTi transform of A111966, binomial transform of A000984, and inverse Binomial transform of A081671. Convolved with A002212: (1, 3, 10, 36, ...) = A026376: (1, 6, 30, 144, ...). Equals convolution square root of A003463: (1, 6, 31, 156, 781, 3906, ...). - Gary W. Adamson, May 17 2009
Diagonal of array with rational generating function 1/(1 - (x^2 + 3*x*y + y^2)). - Gheorghe Coserea, Jul 29 2018
a(n) == 0 (mod 3) if and only if n is in A081606. - Fabio Visonà, Aug 03 2023

Examples

			G.f. = 1 + 3*x + 11*x^2 + 45*x^3 + 195*x^4 + 873*x^5 + 3989*x^6 + ...
		

Crossrefs

Column 3 of A292627. Column 1 of A110165. Central column of A272866.
First differences are in A085362. Bisection of A026380.
m-th binomial transforms of A000984: A126869 (m = -2), A002426 (m = -1 and m = -3 for signed version), A000984 (m = 0 and m = -4 for signed version), A026375 (m = 1 and m = -5 for signed version), A081671 (m = 2 and m = -6 for signed version), A098409 (m = 3 and m = -7 for signed version), A098410 (m = 4 and m = -8 for signed version), A104454 (m = 5 and m = -9 for signed version).

Programs

  • GAP
    List([0..25],n->Sum([0..n],k->Binomial(n,k)*Binomial(2*k,k))); # Muniru A Asiru, Jul 29 2018
  • Haskell
    a026375 n = a026374 (2 * n) n  -- Reinhard Zumkeller, Feb 22 2014
    
  • Maple
    seq( add(binomial(n,k)*binomial(2*k,k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
    a := n -> simplify(GegenbauerC(n, -n, -3/2)):
    seq(a(n), n=0..22); # Peter Luschny, May 09 2016
  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-6*x+5*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    (* From Michael Somos, May 11 2014: (Start) *)
    a[ n_] := Sum[ Binomial[n, k] Binomial[2 k, k], {k, 0, n}];
    a[ n_] := If[ n < 0, 0, Hypergeometric2F1[-n, 1/2, 1, -4]];
    a[ n_] := If[ n < 0, 0, Coefficient[(1 + 3 x + x^2)^n, x, n]];
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[Exp[3 x] BesselI[0,2 x], {x, 0, n}]];
    (* (End) *)
  • Maxima
    A026375(n):=coeff(expand((1+3*x+x^2)^n),x,n);
    makelist(A026375(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + 3*x + x^2)^n, n))}; /* Michael Somos, Sep 09 2002 */
    
  • PARI
    a(n)={my(v=Vec((1-x-x^2)^n)); sum(k=1,#v, v[k]^2);} \\ Joerg Arndt, Jul 06 2011
    
  • PARI
    {a(n) = sum(k=0, n, 5^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
    
  • PARI
    {a(n) = sum(k=0, n\2, 3^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019
    

Formula

Representation by Gauss's hypergeometric function, in Maple notation: a(n)=hypergeom([ -n, 1/2 ], [ 1 ], -4). - Karol A. Penson, Apr 20 2001
This sequence is the binomial transform of A000984. - John W. Layman, Aug 11 2000; proved by Emeric Deutsch, Oct 26 2002
E.g.f.: exp(3*x)*I_0(2x), where I_0 is Bessel function. - Michael Somos, Sep 17 2002
G.f.: 1/sqrt(1-6*x+5*x^2). - Emeric Deutsch, Oct 26 2002
D-finite with recurrence: n*a(n)-3*(2*n-1)*a(n-1)+5*(n-1)*a(n-2)=0 for n > 1. - Emeric Deutsch, Jan 24 2004
From Emeric Deutsch, Jan 30 2004: (Start)
a(n) = [t^n](1+3*t+t^2)^n;
a(n) = Sum_{j=ceiling(n/2)..n} 3^(2*j-n)*binomial(n, j)*binomial(j, n-j). (End)
a(n) = A026380(2*n-1) (n>0). - Emeric Deutsch, Feb 18 2004
G.f.: 1/(1-x-2*x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x... (continued fraction). - Paul Barry, Jan 06 2009
a(n) = sum of squared coefficients of (1+x-x^2)^n - see triangle A084610. - Paul D. Hanna, Jul 18 2009
a(n) = sum of squares of coefficients of (1-x-x^2)^n. - Joerg Arndt, Jul 06 2011
a(n) = (1/Pi)*Integral_{x=-2..2} ((3+x)^n/sqrt((2-x)*(2+x))) dx. - Peter Luschny, Sep 12 2011
a(n) ~ 5^(n+1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
G.f.: G(0)/(1-x), where G(k) = 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
0 = a(n)*(+25*a(n+1) - 45*a(n+2) + 10*a(n+3)) + a(n+1)*(-15*a(n+1) + 36*a(n+2) - 9*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, May 11 2014
a(n) = GegenbauerC(n, -n, -3/2). - Peter Luschny, May 09 2016
a(n) = Sum_{k=0..n} 5^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
a(n) = (1/Pi) * Integral_{x = -1..1} (1 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (5 - 4*x^2)^n/sqrt(1 - x^2) dx. - Peter Bala, Jan 27 2020
From Peter Bala, Jan 10 2022: (Start)
1 + x*exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + ... is the o.g.f. of A002212.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

Extensions

Definition simplified by N. J. A. Sloane, Feb 16 2012

A081671 Expansion of e.g.f. exp(4x) * I_0(2x).

Original entry on oeis.org

1, 4, 18, 88, 454, 2424, 13236, 73392, 411462, 2325976, 13233628, 75682512, 434662684, 2505229744, 14482673832, 83940771168, 487610895942, 2838118247064, 16547996212044, 96635257790352, 565107853947444, 3308820294176016, 19395905063796312, 113814537122646432
Offset: 0

Views

Author

Paul Barry, Mar 28 2003

Keywords

Comments

Binomial transform of A026375. Second binomial transform of A000984.
Largest coefficient of (1+4x+x^2)^n. - Paul Barry, Dec 15 2003
Row sums of triangle in A124574. - Philippe Deléham, Sep 27 2007
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in 4 colors. - N-E. Fahssi, Feb 05 2008
Diagonal of rational function 1/(1 - (x^2 + 4*x*y + y^2)). - Gheorghe Coserea, Aug 01 2018

Crossrefs

Column 4 of A292627.
m-th binomial transforms of A000984: A126869 (m = -2), A002426 (m = -1 and m = -3 for signed version), A000984 (m = 0 and m = -4 for signed version), A026375 (m = 1 and m = -5 for signed version), A081671 (m = 2 and m = -6 for signed version), A098409 (m = 3 and m = -7 for signed version), A098410 (m = 4 and m = -8 for signed version), A104454 (m = 5 and m = -9 for signed version).

Programs

  • Maple
    seq(simplify(2^n*hypergeom([-n,1/2], [1], -2)),n=0..23); # Peter Luschny, Apr 26 2016
    seq(simplify(GegenbauerC(n,-n,-2)),n=0..23); # Peter Luschny, May 09 2016
  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[(1-2*x)*(1-6*x)],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 13 2012 *)
  • Maxima
    a(n):=coeff(expand((1+4*x+x^2)^n),x^n);
    makelist(a(n),n,0,30); /* Emanuele Munarini, Apr 27 2012 */
    
  • PARI
    x='x+O('x^66); Vec(1/sqrt((1-2*x)*(1-6*x))) \\ Joerg Arndt, May 07 2013
    
  • PARI
    {a(n) = sum(k=0, n\2, 4^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019

Formula

a(n) = Sum_{m=0..n} Sum_{k=0..m} C(n, m)*C(m, k)*C(2k, k).
G.f.: 1/sqrt((1-2*x)*(1-6*x)). - Vladeta Jovovic, Oct 09 2003
a(n) = Sum_{k=0..n} 2^(n-k) * C(n, k) * C(2*k, k). - Paul Barry, Jan 27 2005
a(n) = Sum_{k=0..n} 6^(n-k) * (-1)^k * C(n,k) * C(2*k,k). - Paul D. Hanna, Dec 09 2018
D-finite with recurrence: n*a(n) = 4*(2*n-1)*a(n-1) - 12*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 13 2012
a(n) ~ sqrt(3/(2*Pi*n))*6^n. - Vaclav Kotesovec, Oct 13 2012
a(n) = 2^n*hypergeom([-n,1/2], [1], -2). - Peter Luschny, Apr 26 2016
a(n) = GegenbauerC(n, -n, -2). - Peter Luschny, May 09 2016
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
a(n) = (1/Pi) * Integral_{x = -1..1} (2 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (6 - 4*x^2)^n/sqrt(1 - x^2) dx . - Peter Bala, Jan 27 2020
From Peter Bala, Jan 10 2022: (Start)
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 4*x + 17*x^2 + 76*x^3 + 354*x^4 + ... is the o.g.f. of A005572.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
a(n) = (1/2)^n * Sum_{k=0..n} 3^k * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A098409 Expansion of 1/(sqrt(1-3*x)*sqrt(1-7*x)).

Original entry on oeis.org

1, 5, 27, 155, 931, 5775, 36645, 236325, 1542195, 10153775, 67313377, 448691985, 3004182349, 20188647185, 136094684907, 919884469275, 6232016686995, 42305974804575, 287706424085745, 1959685788407025, 13367193276457881, 91295551930615005, 624255065007468207
Offset: 0

Views

Author

Paul Barry, Sep 07 2004

Keywords

Comments

Binomial transform of A081671. 3rd binomial transform of A000984. Binomial transform is A098410.
Largest coefficient of (1+5*x+x^2)^n; row sums of triangle in A126331. - Philippe Deléham, Oct 02 2007
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in five colors. - N-E. Fahssi, Feb 05 2008
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps can have five colors. - N-E. Fahssi, Mar 31 2008
Diagonal of rational function 1/(1 - (x^2 + 5*x*y + y^2)). - Gheorghe Coserea, Aug 01 2018

Crossrefs

Column 5 of A292627. Cf. A182401.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(Sqrt[1-3*x]*Sqrt[1-7*x]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
    CoefficientList[Series[1/(Sqrt[1-3x] Sqrt[1-7x]),{x,0,30}],x] (* Harvey P. Dale, Jun 20 2015 *)
  • Maxima
    a(n):=coeff(expand((1+5*x+x^2)^n),x^n);
    makelist(a(n),n,0,30); /* Emanuele Munarini, Apr 27 2012 */
    
  • PARI
    x='x+O('x^66); Vec(1/(sqrt(1-3*x)*sqrt(1-7*x))) \\ Joerg Arndt, May 11 2013
    
  • PARI
    {a(n) = sum(k=0, n, 7^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
    
  • PARI
    {a(n) = sum(k=0, n\2, 5^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019

Formula

G.f.: 1/sqrt(1-10*x+21*x^2).
E.g.f.: exp(5x)*BesselI(0, 2x).
a(n) = Sum_{k=0..n} 3^(n-k)*binomial(n,k)*binomial(2k,k). - Paul Barry, Mar 08 2005
a(n) = [x^n] (1+5*x+x^2)^n. - Emanuele Munarini, Apr 27 2012
D-finite with recurrence: n*a(n) = 5*(2*n-1)*a(n-1) - 21*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ 7^(n+1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
a(n) = Sum_{k=0..n} 7^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 5^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
From Peter Bala, Jan 10 2022: (Start)
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 5*x + 26*x^2 + 140*x^3 + 777*x^4 + ... is the o.g.f. of A182401.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k.
a(n) = (1/Pi) * Integral_{x = -1..1} (3 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (7 - 4*x^2)^n/sqrt(1 - x^2) dx. (End)
a(n) = (1/4)^n * Sum_{k=0..n} 3^k * 7^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A098410 Expansion of 1/(sqrt(1-4*x)*sqrt(1-8*x)).

Original entry on oeis.org

1, 6, 38, 252, 1734, 12276, 88796, 652728, 4856902, 36478404, 275975028, 2099978568, 16054486044, 123213933576, 948713646072, 7325088811632, 56692748053062, 439689331938276, 3416328042565124, 26587566855421608, 207218159714453044, 1617124976299315224, 12634892752595949192
Offset: 0

Views

Author

Paul Barry, Sep 07 2004

Keywords

Comments

Convolution of A000984(n) and 2^n*A000984(n). Convolution of A000984(n) and A059304. 4th binomial transform of A000984.
Largest coefficient of (1 + 6*x + x^2)^n. - Philippe Deléham, Oct 02 2007
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps can have 6 colors. - N-E. Fahssi, Mar 31 2008
Self-convolution of a(n)/4^n gives A126646. - Vladimir Reshetnikov, Oct 10 2016
Diagonal of rational function 1/(1 - (x^2 + 6*x*y + y^2)). - Gheorghe Coserea, Aug 03 2018

Examples

			G.f. = 1 + 6*x + 38*x^2 + 252*x^3 + 1734*x^4 + 12276*x^5 + 88796*x^6 + ...
		

Crossrefs

Column 6 of A292627. Cf. A025230, A104454 (binomial transf.)

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(Sqrt[1-4*x]*Sqrt[1-8*x]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
    a[ n_] := If[n < 0, 0, 4^n Hypergeometric2F1[-n, 1/2, 1, -1]]; (* Michael Somos, May 06 2017 *)
    a[ n_] := SeriesCoefficient[ D[ InverseJacobiSD[2 x, -1] / 2, x], {x, 0, 2 n}]; (* Michael Somos, May 06 2017 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-12*x+32*x^2)) \\ Joerg Arndt, May 11 2013
    
  • PARI
    {a(n) = sum(k=0, n, 8^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
    
  • PARI
    {a(n) = sum(k=0, n\2, 6^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019
    
  • Sage
    a = lambda n: 4^n*hypergeometric([-n, 1/2], [1], -1)
    [simplify(a(n)) for n in range(23)] # Peter Luschny, May 19 2015

Formula

G.f.: 1/sqrt(1 - 12*x + 32*x^2).
E.g.f.: exp(6*x)*BesselI(0, 2*x).
a(n) = Sum_{k=0..n} 2^k*binomial(2*k, k)*binomial(2*(n-k), n-k).
a(n) = Sum_{k=0..n} 4^(n-k)*binomial(n,k)*binomial(2k,k). - Paul Barry, Mar 08 2005
D-finite with recurrence: n*a(n) = 6*(2*n-1)*a(n-1) - 32*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ 2^(3*n+1/2)/sqrt(Pi*n). - Vaclav Kotesovec, Oct 15 2012
a(n) = 4^n*hypergeometric([-n, 1/2], [1], -1). - Peter Luschny, May 19 2015
a(n) = Sum_{k=0..n} 8^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 6^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
From Peter Bala, Jan 10 2022: (Start)
3*x + x^2*exp(Sum_{n >= 1} a(n)*x^n/n) = 3*x + x^2 + 6*x^3 + 37*x^4 + 234*x^5 + 1514*x^6 + ... is the o.g.f. of A025230.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k.
a(n) = (1/Pi) * Integral_{x = -1..1} (4 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (8 - 4*x^2)^n/sqrt(1 - x^2) dx. (End)

A186925 Coefficient of x^n in (1+n*x+x^2)^n.

Original entry on oeis.org

1, 1, 6, 45, 454, 5775, 88796, 1602447, 33213510, 777665691, 20302315252, 584774029983, 18422140045596, 630132567760345, 23257790717110392, 921362075184792825, 38994274473840538182, 1755943506127367745795, 83829045032101462204100, 4229207755493569286374167
Offset: 0

Views

Author

Emanuele Munarini, Mar 02 2011

Keywords

Crossrefs

Main diagonal of A292627.

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+n*x+x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 02 2011
    
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^(n-2*k), {k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)
    Table[GegenbauerC[n, -n, -n/2] + KroneckerDelta[n, 0], {n, 0, 100}] (* Emanuele Munarini, Oct 20 2016 *)
    Table[SeriesCoefficient[(1 + n*x + x^2)^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 13 2023 *)
  • Maxima
    a(n):=coeff(expand((1+n*x+x^2)^n),x,n);
    
  • Maxima
    makelist(ultraspherical(n,-n,-n/2),n,0,12); /* Emanuele Munarini, Oct 20 2016 */
    makelist(a(n),n,0,20);
    
  • PARI
    {a(n) = sum(k=0, n, (n-2)^(n-k)*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, May 01 2019
    
  • PARI
    a(n) = polcoef((1+n*x+x^2)^n, n); \\ Michel Marcus, May 01 2019

Formula

a(n) = [x^n] (1+n*x+x^2)^n.
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, n-2*k)*n^(n-2*k).
a(n) ~ BesselI(0,2) * n^n. - Vaclav Kotesovec, Apr 17 2014
a(n) = GegenbauerPoly(n,-n,-n/2). - Emanuele Munarini, Oct 20 2016
From Ilya Gutkovskiy, Sep 20 2017: (Start)
a(n) = [x^n] 1/sqrt((1 + 2*x - n*x)*(1 - 2*x - n*x)).
a(n) = n! * [x^n] exp(n*x)*BesselI(0,2*x). (End)
From Seiichi Manyama, May 01 2019: (Start)
a(n) = Sum_{k=0..n} (n-2)^(n-k) * binomial(n,k) * binomial(2*k,k).
a(n) = Sum_{k=0..n} (n+2)^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). (End)
a(n) = (1/4)^n * Sum_{k=0..n} (n-2)^k * (n+2)^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A104454 Expansion of 1/(sqrt(1-5x)*sqrt(1-9x)).

Original entry on oeis.org

1, 7, 51, 385, 2995, 23877, 194109, 1602447, 13389075, 112935445, 959783881, 8206116387, 70507643101, 608271899515, 5265458413875, 45711784088145, 397829544860115, 3469772959954245, 30319709631711225, 265383615634224675, 2326318766651511945, 20419439617056272415
Offset: 0

Views

Author

Paul Barry, Mar 08 2005

Keywords

Comments

Fifth binomial transform of A000984. In general, the k-th binomial transform of A000984 will have g.f. 1/(sqrt(1-k*x)*sqrt(1-(k+4)*x)) and a(n)=sum{i=0..n, C(n,i)C(2i,i)k^(n-i)}.
Diagonal of rational function 1/(1 - (x^2 + 7*x*y + y^2)). - Gheorghe Coserea, Aug 03 2018

Crossrefs

Column 7 of A292627.

Programs

  • Mathematica
    CoefficientList[Series[1/(Sqrt[1-5x] Sqrt[1-9x]),{x,0,30}],x] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-14*x+45*x^2)) \\ Joerg Arndt, May 13 2013
    
  • PARI
    {a(n) = sum(k=0, n, 9^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
    
  • PARI
    {a(n) = sum(k=0, n\2, 7^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019

Formula

G.f.: 1/sqrt(1-14*x+45*x^2).
E.g.f.: exp(7x)*BesselI(0, 2x)
a(n) = Sum_{k=0..n} 5^(n-k)*binomial(n,k)*binomial(2k,k).
D-finite with recurrence: n*a(n) = 7*(2*n-1)*a(n-1) - 45*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 3^(2*n+1)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 17 2012
a(n) = Sum_{k=0..n} 9^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 7^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * 9^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A307855 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1-4*k)*x^2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 5, 7, 1, 1, 1, 7, 13, 19, 1, 1, 1, 9, 19, 49, 51, 1, 1, 1, 11, 25, 91, 161, 141, 1, 1, 1, 13, 31, 145, 331, 581, 393, 1, 1, 1, 15, 37, 211, 561, 1441, 2045, 1107, 1, 1, 1, 17, 43, 289, 851, 2841, 5797, 7393, 3139, 1
Offset: 0

Views

Author

Seiichi Manyama, May 01 2019

Keywords

Examples

			Square array begins:
   1,   1,    1,    1,     1,     1,     1, ...
   1,   1,    1,    1,     1,     1,     1, ...
   1,   3,    5,    7,     9,    11,    13, ...
   1,   7,   13,   19,    25,    31,    37, ...
   1,  19,   49,   91,   145,   211,   289, ...
   1,  51,  161,  331,   561,   851,  1201, ...
   1, 141,  581, 1441,  2841,  4901,  7741, ...
   1, 393, 2045, 5797, 12489, 22961, 38053, ...
		

Crossrefs

Columns k=0..6 give A000012, A002426, A084601, A084603, A084605, A098264, A098265.
Main diagonal gives A187018.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[n, j] * Binomial[n-j, j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of (1 + x + k*x^2)^n.
A(n,k) = Sum_{j=0..floor(n/2)} k^j * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^j * binomial(n,2*j) * binomial(2*j,j).
D-finite with recurrence: n * A(n,k) = (2*n-1) * A(n-1,k) - (1-4*k) * (n-1) * A(n-2,k).

A307847 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*x + (1-4*k^2)*x^2).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 9, 7, 1, 1, 1, 19, 25, 19, 1, 1, 1, 33, 55, 145, 51, 1, 1, 1, 51, 97, 595, 561, 141, 1, 1, 1, 73, 151, 1729, 2611, 2841, 393, 1, 1, 1, 99, 217, 4051, 8001, 22141, 12489, 1107, 1, 1, 1, 129, 295, 8209, 19251, 105441, 119449, 60705, 3139, 1
Offset: 0

Views

Author

Seiichi Manyama, May 01 2019

Keywords

Examples

			Square array begins:
   1,   1,     1,      1,      1,       1, ...
   1,   1,     1,      1,      1,       1, ...
   1,   3,     9,     19,     33,      51, ...
   1,   7,    25,     55,     97,     151, ...
   1,  19,   145,    595,   1729,    4051, ...
   1,  51,   561,   2611,   8001,   19251, ...
   1, 141,  2841,  22141, 105441,  369501, ...
   1, 393, 12489, 119449, 627873, 2319801, ...
		

Crossrefs

Columns k=0..2 give A000012, A002426, A084605.
Main diagonal gives A307844.

Programs

  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, k^(2*j)] * Binomial[n, 2*j] * Binomial[2*j, j], {j, 0, Floor[n/2]}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 13 2021 *)

Formula

A(n,k) is the constant term in the expansion of (k/x + 1 + k*x)^n.
A(n,k) is the coefficient of x^n in the expansion of (1 + x + (k*x)^2)^n.
A(n,k) = Sum_{j=0..n} (1-2*k)^(n-j) * k^j * binomial(n,j) * binomial(2*j,j).
A(n,k) = Sum_{j=0..n} (1+2*k)^(n-j) * (-k)^j * binomial(n,j) * binomial(2*j,j).
A(n,k) = Sum_{j=0..floor(n/2)} k^(2*j) * binomial(n,2*j) * binomial(2*j,j).
n * A(n,k) = (2*n-1) * A(n-1,k) - (1-4*k^2) * (n-1) * A(n-2,k).

A307910 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 7, 0, 1, 4, 15, 32, 19, 0, 1, 5, 24, 81, 136, 51, 0, 1, 6, 35, 160, 459, 592, 141, 0, 1, 7, 48, 275, 1120, 2673, 2624, 393, 0, 1, 8, 63, 432, 2275, 8064, 15849, 11776, 1107, 0, 1, 9, 80, 637, 4104, 19375, 59136, 95175, 53344, 3139, 0
Offset: 0

Views

Author

Seiichi Manyama, May 05 2019

Keywords

Examples

			Square array begins:
   1,   1,     1,     1,      1,       1,       1, ...
   0,   1,     2,     3,      4,       5,       6, ...
   0,   3,     8,    15,     24,      35,      48, ...
   0,   7,    32,    81,    160,     275,     432, ...
   0,  19,   136,   459,   1120,    2275,    4104, ...
   0,  51,   592,  2673,   8064,   19375,   40176, ...
   0, 141,  2624, 15849,  59136,  168125,  400896, ...
   0, 393, 11776, 95175, 439296, 1478125, 4053888, ...
		

Crossrefs

Columns k=0..4 give A000007, A002426, A006139, A122868, A059304.
Main diagonal gives A092366.

Programs

  • Mathematica
    A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, ] = 1; A[, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + k*x^2)^n.
A(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j) * binomial(2*j,j).
n * A(n,k) = k * (2*n-1) * A(n-1,k) - k * (k-4) * (n-1) * A(n-2,k).

A292628 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)*BesselI(1,2*x).

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 2, 3, 0, 1, 4, 6, 0, 0, 1, 6, 15, 16, 10, 0, 1, 8, 30, 56, 45, 0, 0, 1, 10, 51, 144, 210, 126, 35, 0, 1, 12, 78, 304, 685, 792, 357, 0, 0, 1, 14, 111, 560, 1770, 3258, 3003, 1016, 126, 0, 1, 16, 150, 936, 3885, 10224, 15533, 11440, 2907, 0, 0, 1, 18, 195, 1456, 7570, 26550, 58947, 74280, 43758, 8350, 462
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 20 2017

Keywords

Comments

A(n,k) is the k-th binomial transform of A138364 evaluated at n.

Examples

			E.g.f. of column k: A_k(x) = x/1! + 2*k*x^2/2! + 3*(k^2 + 1)*x^3/3! + 4*k*(k^2 + 3)*x^4/4! + 5*(k^4 + 6*k^2 + 2)*x^5/5! + ...
Square array begins:
   0,   0,    0,    0,     0,     0,  ...
   1,   1,    1,    1,     1,     1,  ...
   0,   2,    4,    6,     8,    10,  ...
   3,   6,   15,   30,    51,    78,  ...
   0,  16,   56,  144,   304,   560,  ...
  10,  45,  210,  685,  1770,  3885,  ...
		

Crossrefs

Columns k=0..3 give A138364, A005717, A001791, A026376.
Main diagonal gives A292629.
Cf. A292627.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[k x] BesselI[1, 2 x], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: exp(k*x)*BesselI(1,2*x).
Showing 1-10 of 11 results. Next