A126869
a(n) = Sum_{k = 0..n} binomial(n,floor(k/2))*(-1)^(n-k).
Original entry on oeis.org
1, 0, 2, 0, 6, 0, 20, 0, 70, 0, 252, 0, 924, 0, 3432, 0, 12870, 0, 48620, 0, 184756, 0, 705432, 0, 2704156, 0, 10400600, 0, 40116600, 0, 155117520, 0, 601080390, 0, 2333606220, 0, 9075135300, 0, 35345263800, 0, 137846528820, 0, 538257874440, 0, 2104098963720, 0, 8233430727600, 0, 32247603683100, 0, 126410606437752, 0
Offset: 0
a(4) = 6 {UUDD,UDUD,UDDU,DUUD,DUDU,DDUU}.
- Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv preprint arXiv:1110.6638 [math.NT], 2011.
- Francesc Fite and Andrew V. Sutherland, Sato-Tate distributions of twists of y^2= x^5-x and y^2= x^6+1, arXiv preprint arXiv:1203.1476 [math.NT], 2012. - From _N. J. A. Sloane_, Sep 14 2012
- Nikita Gogin and Mika Hirvensalo, On the Moments of Squared Binomial Coefficients, (2020).
- Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 99.
This is
A000984 with interspersed zeros. m-th binomial transforms of
A000984:
A126869 (m = -2),
A002426 (m = -1 and m = -3 for signed version),
A000984 (m = 0 and m = -4 for signed version),
A026375 (m = 1 and m = -5 for signed version),
A081671 (m = 2 and m = -6 for signed version),
A098409 (m = 3 and m = -7 for signed version),
A098410 (m = 4 and m = -8 for signed version),
A104454 (m = 5 and m = -9 for signed version).
-
a126869 n = a204293_row (2*n) !! n -- Reinhard Zumkeller, Jan 14 2012
-
seq((-1)^(n/2)*pochhammer(-n,n/2)/(n/2)!, n=0..43); # Peter Luschny, May 17 2013
seq(n!*coeff(series(hypergeom([],[1],x^2),x,n+1),x,n),n=0..42); # Peter Luschny, Jan 31 2015
-
Table[(-1)^Floor[n/2] HypergeometricPFQ[{-n,-n},{1},-1],{n,0,30}] (* Peter Luschny, Nov 01 2011 *)
-
A126869 = lambda n: (2^(n-1)*((-1)^n+1)*gamma((n+1)/2))/(sqrt(pi)*gamma((n+2)/2))
[A126869(n) for n in range(44)] # Peter Luschny, Sep 10 2014
A026375
a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k).
Original entry on oeis.org
1, 3, 11, 45, 195, 873, 3989, 18483, 86515, 408105, 1936881, 9238023, 44241261, 212601015, 1024642875, 4950790605, 23973456915, 116312293305, 565280386625, 2751474553575, 13411044301945, 65448142561035, 319756851757695
Offset: 0
G.f. = 1 + 3*x + 11*x^2 + 45*x^3 + 195*x^4 + 873*x^5 + 3989*x^6 + ...
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
- Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- David Callan, A combinatorial interpretation for an identity of Barrucand, JIS 11 (2008) 08.3.4.
- Shu-Chiuan Chang and Robert Shrock, Structure of the Partition Function and transfer matrices for the Potts model in a magnetic field on lattice strips, J. Stat. Phys. 137 (2009) 667.
- D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33. - From _N. J. A. Sloane_, May 11 2012
- Isaac DeJager, Madeleine Naquin, and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Rui Duarte and António Guedes de Oliveira, Generating functions of lattice paths, Univ. do Porto (Portugal 2023).
- Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv preprint arXiv:1110.6638 [math.NT], 2011-2012.
- Francesc Fite and Andrew V. Sutherland, Sato-Tate distributions of twists of y^2= x^5-x and y^2= x^6+1, arXiv preprint arXiv:1203.1476 [math.NT], 2012. - From _N. J. A. Sloane_, Sep 14 2012
- J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
- Mathematics Stack Exchange, Proof that a(n) == 0 (mod 3) if and only if n is in A081606.
- László Németh, Tetrahedron trinomial coefficient transform, arXiv:1905.13475 [math.CO], 2019.
- H. D. Nguyen and D. Taggart, Mining the OEIS: Ten Experimental Conjectures, 2013. Mentions this sequence. - From _N. J. A. Sloane_, Mar 16 2014
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 96.
m-th binomial transforms of
A000984:
A126869 (m = -2),
A002426 (m = -1 and m = -3 for signed version),
A000984 (m = 0 and m = -4 for signed version),
A026375 (m = 1 and m = -5 for signed version),
A081671 (m = 2 and m = -6 for signed version),
A098409 (m = 3 and m = -7 for signed version),
A098410 (m = 4 and m = -8 for signed version),
A104454 (m = 5 and m = -9 for signed version).
-
List([0..25],n->Sum([0..n],k->Binomial(n,k)*Binomial(2*k,k))); # Muniru A Asiru, Jul 29 2018
-
a026375 n = a026374 (2 * n) n -- Reinhard Zumkeller, Feb 22 2014
-
seq( add(binomial(n,k)*binomial(2*k,k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
a := n -> simplify(GegenbauerC(n, -n, -3/2)):
seq(a(n), n=0..22); # Peter Luschny, May 09 2016
-
Table[SeriesCoefficient[1/Sqrt[1-6*x+5*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
(* From Michael Somos, May 11 2014: (Start) *)
a[ n_] := Sum[ Binomial[n, k] Binomial[2 k, k], {k, 0, n}];
a[ n_] := If[ n < 0, 0, Hypergeometric2F1[-n, 1/2, 1, -4]];
a[ n_] := If[ n < 0, 0, Coefficient[(1 + 3 x + x^2)^n, x, n]];
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[Exp[3 x] BesselI[0,2 x], {x, 0, n}]];
(* (End) *)
-
A026375(n):=coeff(expand((1+3*x+x^2)^n),x,n);
makelist(A026375(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
-
{a(n) = if( n<0, 0, polcoeff( (1 + 3*x + x^2)^n, n))}; /* Michael Somos, Sep 09 2002 */
-
a(n)={my(v=Vec((1-x-x^2)^n)); sum(k=1,#v, v[k]^2);} \\ Joerg Arndt, Jul 06 2011
-
{a(n) = sum(k=0, n, 5^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
-
{a(n) = sum(k=0, n\2, 3^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019
A124574
Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (3,4,4,...) and super- and subdiagonals (1,1,1,...).
Original entry on oeis.org
1, 3, 1, 10, 7, 1, 37, 39, 11, 1, 150, 204, 84, 15, 1, 654, 1050, 555, 145, 19, 1, 3012, 5409, 3415, 1154, 222, 23, 1, 14445, 28063, 20223, 8253, 2065, 315, 27, 1, 71398, 146920, 117208, 55300, 16828, 3352, 424, 31, 1, 361114, 776286, 671052, 355236, 125964, 30660, 5079, 549, 35, 1
Offset: 1
Row 4 is (37,39,11,1) because M[4]= [3,1,0,0;1,4,1,0;0,1,4,1;0,0,1,4] and M[4]^3=[37,39,11,1; 39, 87, 51, 12; 11, 51, 88, 50; 1, 12, 50, 76].
Triangle starts:
1;
3, 1
10, 7, 1;
37, 39, 11, 1
150, 204, 84, 15, 1;
654, 1050, 555, 145, 19, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
3, 1
1, 4, 1
0, 1, 4, 1
0, 0, 1, 4, 1
0, 0, 0, 1, 4, 1
0, 0, 0, 0, 1, 4, 1
0, 0, 0, 0, 0, 1, 4, 1
0, 0, 0, 0, 0, 0, 1, 4, 1
0, 0, 0, 0, 0, 0, 0, 1, 4, 1 (End)
-
with(linalg): m:=proc(i,j) if i=1 and j=1 then 3 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 3,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,2)+GegenbauerC(n-k-1,-n+1,2 )): seq(print(seq(T(n,k),k=1..n)), n=1..10); # Peter Luschny, May 13 2016
-
M[n_] := SparseArray[{{1, 1} -> 3, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 3, 4], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
A098409
Expansion of 1/(sqrt(1-3*x)*sqrt(1-7*x)).
Original entry on oeis.org
1, 5, 27, 155, 931, 5775, 36645, 236325, 1542195, 10153775, 67313377, 448691985, 3004182349, 20188647185, 136094684907, 919884469275, 6232016686995, 42305974804575, 287706424085745, 1959685788407025, 13367193276457881, 91295551930615005, 624255065007468207
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
- Hacène Belbachir, Abdelghani Mehdaoui and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., Vol. 22 (2019), Article 19.3.5.
- Isaac DeJager, Madeleine Naquin and Frank Seidl, Colored Motzkin Paths of Higher Order, VERUM 2019.
- Francesc Fite, Kiran S. Kedlaya, Victor Rotger and Andrew V. Sutherland, Sato-Tate distributions and Galois endomorphism modules in genus 2, arXiv preprint arXiv:1110.6638 [math.NT], 2011-2012 (the sequence b_{5,n}).
- Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.7.
-
Table[SeriesCoefficient[1/(Sqrt[1-3*x]*Sqrt[1-7*x]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
CoefficientList[Series[1/(Sqrt[1-3x] Sqrt[1-7x]),{x,0,30}],x] (* Harvey P. Dale, Jun 20 2015 *)
-
a(n):=coeff(expand((1+5*x+x^2)^n),x^n);
makelist(a(n),n,0,30); /* Emanuele Munarini, Apr 27 2012 */
-
x='x+O('x^66); Vec(1/(sqrt(1-3*x)*sqrt(1-7*x))) \\ Joerg Arndt, May 11 2013
-
{a(n) = sum(k=0, n, 7^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
-
{a(n) = sum(k=0, n\2, 5^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019
A026376
a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=2; also a(n) = T(2n,n-1).
Original entry on oeis.org
1, 6, 30, 144, 685, 3258, 15533, 74280, 356283, 1713690, 8263596, 39938616, 193419915, 938430990, 4560542550, 22195961280, 108171753355, 527816696850, 2578310320610, 12607504827600, 61706212037295, 302275142049870, 1481908332595625, 7270432009471224
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Emeric Deutsch, Emanuele Munarini, and Simone Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 18.
- Toufik Mansour and José Luis Ramírez, Enumeration of Fuss-skew paths, Ann. Math. Inform. (2022) Vol. 55, 125-136. See p. 129.
-
a := n -> simplify(GegenbauerC(n-1, -n, -3/2)):
seq(a(n), n=1..24); # Peter Luschny, May 09 2016
-
Rest[CoefficientList[Series[(1-3*x-Sqrt[1-6*x+5*x^2])/(2*x*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *)
-
a(n)=if(n<0,0,polcoeff((1+3*x+x^2)^n,n-1))
-
A026376 = lambda n : n*hypergeometric([1, 3/2, 1-n], [1, 3], -4)
[round(A026376(n).n(100)) for n in (1..24)] # Peter Luschny, Sep 16 2014
-
# Recurrence:
def A026376():
x, y, n = 1, 1, 1
while True:
x, y = y, ((6*n + 3)*y - (5*n - 5)*x) / (n + 2)
yield n*x
n += 1
a = A026376()
[next(a) for i in (1..24)] # Peter Luschny, Sep 16 2014
A104454
Expansion of 1/(sqrt(1-5x)*sqrt(1-9x)).
Original entry on oeis.org
1, 7, 51, 385, 2995, 23877, 194109, 1602447, 13389075, 112935445, 959783881, 8206116387, 70507643101, 608271899515, 5265458413875, 45711784088145, 397829544860115, 3469772959954245, 30319709631711225, 265383615634224675, 2326318766651511945, 20419439617056272415
Offset: 0
-
CoefficientList[Series[1/(Sqrt[1-5x] Sqrt[1-9x]),{x,0,30}],x] (* Harvey P. Dale, Apr 11 2012 *)
-
x='x+O('x^66); Vec(1/sqrt(1-14*x+45*x^2)) \\ Joerg Arndt, May 13 2013
-
{a(n) = sum(k=0, n, 9^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
-
{a(n) = sum(k=0, n\2, 7^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019
A292627
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)*BesselI(0,2*x).
Original entry on oeis.org
1, 1, 0, 1, 1, 2, 1, 2, 3, 0, 1, 3, 6, 7, 6, 1, 4, 11, 20, 19, 0, 1, 5, 18, 45, 70, 51, 20, 1, 6, 27, 88, 195, 252, 141, 0, 1, 7, 38, 155, 454, 873, 924, 393, 70, 1, 8, 51, 252, 931, 2424, 3989, 3432, 1107, 0, 1, 9, 66, 385, 1734, 5775, 13236, 18483, 12870, 3139, 252, 1, 10, 83, 560, 2995, 12276, 36645, 73392, 86515, 48620, 8953, 0
Offset: 0
E.g.f. of column k: A_k(x) = 1 + k*x/1! + (k^2 + 2)*x^2/2! + (k^3 + 6*k)*x^3/3! + (k^4 + 12*k^2 + 6)*x^4/4! + (k^5 + 20*k^3 + 30*k)*x^5/5! + ...
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
2, 3, 6, 11, 18, 27, ...
0, 7, 20, 45, 88, 155, ...
6, 19, 70, 195, 454, 931, ...
0, 51, 252, 873, 2424, 5775, ...
-
Table[Function[k, n! SeriesCoefficient[Exp[k x] BesselI[0, 2 x], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
Table[Function[k, SeriesCoefficient[1/Sqrt[(1 + 2 x - k x) (1 - 2 x - k x)], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
A109187
Triangle read by rows: T(n,k) is number of Grand Motzkin paths of length n having k (1,0)-steps.
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 6, 0, 12, 0, 1, 0, 30, 0, 20, 0, 1, 20, 0, 90, 0, 30, 0, 1, 0, 140, 0, 210, 0, 42, 0, 1, 70, 0, 560, 0, 420, 0, 56, 0, 1, 0, 630, 0, 1680, 0, 756, 0, 72, 0, 1, 252, 0, 3150, 0, 4200, 0, 1260, 0, 90, 0, 1, 0, 2772, 0, 11550, 0, 9240, 0, 1980, 0, 110, 0, 1
Offset: 0
T(3,1)=6 because we have hud,hdu,udh,duh,uhd,dhu, where u=(1,1),d=(1,-1), h=(1,0).
Triangle begins:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
[0] 1;
[1] 0, 1;
[2] 2, 0, 1;
[3] 0, 6, 0, 1;
[4] 6, 0, 12, 0, 1;
[5] 0, 30, 0, 20, 0, 1;
[6] 20, 0, 90, 0, 30, 0, 1;
[7] 0, 140, 0, 210, 0, 42, 0, 1;
[8] 70, 0, 560, 0, 420, 0, 56, 0, 1;
[9] 0, 630, 0, 1680, 0, 756, 0, 72, 0, 1;
[10] 252, 0, 3150, 0, 4200, 0, 1260, 0, 90, 0, 1;
[11] ...
From _Peter Bala_, Feb 11 2017: (Start)
The infinitesimal generator begins
0
0 0
2 0 0
0 6 0 0
-6 0 12 0 0
0 -30 0 20 0 0
80 0 -90 0 30 0 0
0 560 0 -210 0 42 0 0
-2310 0 2240 0 -420 0 56 0 0
....
and equals the generalized exponential Riordan array [log(Bessel_I(0,2x)),x], and so has integer entries. (End)
Diagonal of rational function R(x, y, t) = 1/(1 - (x^2 + t*x*y + y^2)) with respect to x,y, i.e., T(n,k) = [(xy)^n*t^k] R(x,y,t). For t=0..7 we have the diagonals:
A126869(t=0, column 0),
A002426(t=1, row sums),
A000984(t=2),
A026375(t=3),
A081671(t=4),
A098409(t=5),
A098410(t=6),
A104454(t=7).
-
G:=1/sqrt((1-t*z)^2-4*z^2):Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 13 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 13 do seq(coeff(t*P[n],t^k),k=1..n+1) od;
with(PolynomialTools): CL := p -> CoefficientList(simplify(p), x):
C := (n,x) -> binomial(2*n,n)*hypergeom([-n,-n],[-n+1/2],1/2-x/4):
seq(print(CL(C(n,x))), n=0..11); # Peter Luschny, Jan 23 2018
-
p[0] := 1; p[n_] := GegenbauerC[n, -n , -x/2];
Flatten[Table[CoefficientList[p[n], x], {n, 0, 11}]] (* Peter Luschny, Jan 23 2018 *)
-
T(n,k) = if ((n-k)%2, 0, binomial(n,k)*binomial(n-k, (n-k)/2));
concat(vector(12, n, vector(n, k, T(n-1, k-1)))) \\ Gheorghe Coserea, Sep 06 2018
A098473
Triangle T(n,k) read by rows, T(n, k) = binomial(2*k, k)*binomial(n, k), 0<=k<=n.
Original entry on oeis.org
1, 1, 2, 1, 4, 6, 1, 6, 18, 20, 1, 8, 36, 80, 70, 1, 10, 60, 200, 350, 252, 1, 12, 90, 400, 1050, 1512, 924, 1, 14, 126, 700, 2450, 5292, 6468, 3432, 1, 16, 168, 1120, 4900, 14112, 25872, 27456, 12870, 1, 18, 216, 1680, 8820, 31752, 77616, 123552, 115830
Offset: 0
Rows begin
1;
1, 2;
1, 4, 6;
1, 6, 18, 20;
1, 8, 36, 80, 70;
1, 10, 60, 200, 350, 252;
-
A098473 := proc(n,k) binomial(2*k,k)*binomial(n,k) ; end proc:
-
Table[Binomial[2k,k]Binomial[n,k],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Aug 15 2020 *)
-
T(n,k)=binomial(2*k, k)*binomial(n, k);
for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()); /* as triangle */
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 19, 28, 18, 4, 1, 51, 95, 70, 30, 5, 1, 141, 306, 285, 140, 45, 6, 1, 393, 987, 1071, 665, 245, 63, 7, 1, 1107, 3144, 3948, 2856, 1330, 392, 84, 8, 1, 3139, 9963, 14148, 11844, 6426, 2394, 588, 108, 9, 1
Offset: 0
Triangle begins:
1
1 1
3 2 1
7 9 3 1
19 28 18 4 1
...
From _Peter Bala_, Feb 12 2017: (Start)
The infinitesimal generator begins
0
1 0
2 2 0
0 6 3 0
-6 0 12 4 0
0 -30 0 20 5 0
80 0 -90 0 30 6 0
0 560 0 -210 0 42 7 0
-2310 0 2240 0 -420 0 56 8 0
....
and equals the generalized exponential Riordan array [x + log(Bessel_I(0,2*x)), x], and so has integer entries. (End)
-
A002426[n_] := Sum[Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}]; Table[ Binomial[n, k]*A002426[n - k], {n, 0, 99}, {k, 0, n} ]//Flatten (* G_. C. Greubel_, Mar 07 2017 *)
Showing 1-10 of 30 results.
Comments