cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A126869 a(n) = Sum_{k = 0..n} binomial(n,floor(k/2))*(-1)^(n-k).

Original entry on oeis.org

1, 0, 2, 0, 6, 0, 20, 0, 70, 0, 252, 0, 924, 0, 3432, 0, 12870, 0, 48620, 0, 184756, 0, 705432, 0, 2704156, 0, 10400600, 0, 40116600, 0, 155117520, 0, 601080390, 0, 2333606220, 0, 9075135300, 0, 35345263800, 0, 137846528820, 0, 538257874440, 0, 2104098963720, 0, 8233430727600, 0, 32247603683100, 0, 126410606437752, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2007

Keywords

Comments

Hankel transform is 2^n. Successive binomial transforms are A002426, A000984, A026375, A081671, A098409, A098410.
From Andrew V. Sutherland, Feb 29 2008: (Start)
Counts returning walks of length n on a 1-d integer lattice with step set {-1,+1}.
Moment sequence of the trace of a random matrix in G = SO(2). If X = tr(A) is a random variable (A distributed with Haar measure on G), then a(n) = E[X^n].
Also the moment sequence of the trace of the k-th power of a random matrix in USp(2) = SU(2), for all k > 2.
(End)
From Paul Barry, Aug 10 2009: (Start)
The Hankel transform of 0,1,0,2,0,6,... is 0,-1,0,4,0,-16,0,... with general term I*(-4)^(n/2)(1 - (-1)^n)/4, I = sqrt(-1).
The Hankel transform of 1,1,0,2,0,6,... (which has g.f. 1 + x/sqrt(1 - 4*x^2)) is A164111. (End)
a(n) = A204293(2*n,n): central terms of the triangle in A204293. - Reinhard Zumkeller, Jan 14 2012
a(n) is the total number of closed walks (round trips) of length n on the graph P_N (a line with N nodes and N-1 edges), divided by N, in the limit N -> infinity. See a comment on A198632 and a link under A201198. - Wolfdieter Lang, Oct 10 2012

Examples

			a(4) = 6 {UUDD,UDUD,UDDU,DUUD,DUDU,DDUU}.
		

References

  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.

Crossrefs

This is A000984 with interspersed zeros. m-th binomial transforms of A000984: A126869 (m = -2), A002426 (m = -1 and m = -3 for signed version), A000984 (m = 0 and m = -4 for signed version), A026375 (m = 1 and m = -5 for signed version), A081671 (m = 2 and m = -6 for signed version), A098409 (m = 3 and m = -7 for signed version), A098410 (m = 4 and m = -8 for signed version), A104454 (m = 5 and m = -9 for signed version).

Programs

  • Haskell
    a126869 n = a204293_row (2*n) !! n  -- Reinhard Zumkeller, Jan 14 2012
    
  • Maple
    seq((-1)^(n/2)*pochhammer(-n,n/2)/(n/2)!, n=0..43); # Peter Luschny, May 17 2013
    seq(n!*coeff(series(hypergeom([],[1],x^2),x,n+1),x,n),n=0..42); # Peter Luschny, Jan 31 2015
  • Mathematica
    Table[(-1)^Floor[n/2] HypergeometricPFQ[{-n,-n},{1},-1],{n,0,30}] (* Peter Luschny, Nov 01 2011 *)
  • Sage
    A126869 = lambda n: (2^(n-1)*((-1)^n+1)*gamma((n+1)/2))/(sqrt(pi)*gamma((n+2)/2))
    [A126869(n) for n in range(44)] # Peter Luschny, Sep 10 2014

Formula

From Andrew V. Sutherland, Feb 29 2008: (Start)
a(2*n) = binomial(2*n,n) = A000984(n); a(2*n+1) = 0.
a(n) = Sum_{k = 0..n} A107430(n,k)*(-1)^(n-k).
a(n) = Sum_{k = 0..n} A061554(n,k)*(-1)^k.
a(n) = (1/Pi)*Integral_{t = 0..Pi} cos^n(t) dt. (End)
E.g.f.: I_0(2*x) where I_n(x) is the modified Bessel function as a function of x. - Benjamin Phillabaum, Mar 10 2011
G.f.: A(x) = 1/sqrt(1 - 4*x^2). - Vladimir Kruchinin, Apr 16 2011
a(n) = (1/Pi)*Integral{x = -2..2} x^n/sqrt((2 - x)*(2 + x)). - Peter Luschny, Sep 12 2011
a(n) = (-1)^floor(n/2) * Hypergeometric([-n,-n],[1], -1). - Peter Luschny, Nov 01 2011
E.g.f.: E(0)/(1 - x) where E(k) = 1 - x/(1 - x/(x - (k+1)^2/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Apr 05 2013
E.g.f.: 1 + x^2/(Q(0) - x^2), where Q(k) = x^2 + (k+1)^2 - x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 28 2013
G.f.: 1/(1 - 2*x^2*Q(0)), where Q(k) = 1 + (4*k+1)*x^2/(k+1 - x^2*(2*k+2)*(4*k+3)/(2*x^2*(4*k+3) + (2*k+3)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)/(x*(2*k+1))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
G.f.: G(0)/(1+x), where G(k) = 1 + x*(2+5*x)*(4*k+1)/((4*k+2)*(1+x)^2 - 2*(2*k+1)*(4*k+3)*x*(2+5*x)*(1+x)^2/((4*k+3)*x*(2+5*x) + 4*(k+1)*(1+x)^2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 19 2014
a(n) = 2^n*JacobiP(n,0,-1/2-n,-3). - Peter Luschny, Aug 02 2014
a(n) = (2^(n-1)*((-1)^n+1)*Gamma((n+1)/2))/(sqrt(Pi)*Gamma((n+2)/2)). - Peter Luschny, Sep 10 2014
a(n) = n!*[x^n]hypergeom([],[1],x^2). - Peter Luschny, Jan 31 2015
a(n) = 2^n*hypergeom([1/2,-n],[1],2). - Peter Luschny, Feb 03 2015
From Peter Bala, Jul 25 2016: (Start)
a(n) = (-1)^floor(n/2)*Sum_{k = 0..n} (-1)^k*binomial(n,k)^2.
D-finite with recurrence: a(n) = 4*(n - 1)/n * a(n-2) with a(0) = 1, a(1) = 0. (End)
From Ilya Gutkovskiy, Jul 25 2016: (Start)
Inverse binomial transform of A002426.
a(n) = Sum_{k=0..n} (-1)^k*A128014(k).
a(n) ~ 2^n*((-1)^n + 1)/sqrt(2*Pi*n). (End)

A026375 a(n) = Sum_{k=0..n} binomial(n,k)*binomial(2*k,k).

Original entry on oeis.org

1, 3, 11, 45, 195, 873, 3989, 18483, 86515, 408105, 1936881, 9238023, 44241261, 212601015, 1024642875, 4950790605, 23973456915, 116312293305, 565280386625, 2751474553575, 13411044301945, 65448142561035, 319756851757695
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=0; also a(n)=T(2n,n).
Partial sums of A085362. Number of bilateral Schroeder paths (i.e., lattice paths consisting of steps U=(1,1), D=(1,-1) and H=(2,0)) from (0,0) to (2n,0) and with no H-steps at odd (positive or negative) levels. Example: a(2)=11 because we have HUD, UDH, UDUD, UUDD, UDDU, their reflections in the x-axis and HH. - Emeric Deutsch, Jan 30 2004
Largest coefficient of (1+3*x+x^2)^n; row sums of triangle in A124733. - Philippe Deléham, Oct 02 2007
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in three colors. - N-E. Fahssi, Feb 05 2008
Equals INVERT transform of A109033: (1, 2, 6, 22, 88, ...), INVERTi transform of A111966, binomial transform of A000984, and inverse Binomial transform of A081671. Convolved with A002212: (1, 3, 10, 36, ...) = A026376: (1, 6, 30, 144, ...). Equals convolution square root of A003463: (1, 6, 31, 156, 781, 3906, ...). - Gary W. Adamson, May 17 2009
Diagonal of array with rational generating function 1/(1 - (x^2 + 3*x*y + y^2)). - Gheorghe Coserea, Jul 29 2018
a(n) == 0 (mod 3) if and only if n is in A081606. - Fabio Visonà, Aug 03 2023

Examples

			G.f. = 1 + 3*x + 11*x^2 + 45*x^3 + 195*x^4 + 873*x^5 + 3989*x^6 + ...
		

Crossrefs

Column 3 of A292627. Column 1 of A110165. Central column of A272866.
First differences are in A085362. Bisection of A026380.
m-th binomial transforms of A000984: A126869 (m = -2), A002426 (m = -1 and m = -3 for signed version), A000984 (m = 0 and m = -4 for signed version), A026375 (m = 1 and m = -5 for signed version), A081671 (m = 2 and m = -6 for signed version), A098409 (m = 3 and m = -7 for signed version), A098410 (m = 4 and m = -8 for signed version), A104454 (m = 5 and m = -9 for signed version).

Programs

  • GAP
    List([0..25],n->Sum([0..n],k->Binomial(n,k)*Binomial(2*k,k))); # Muniru A Asiru, Jul 29 2018
  • Haskell
    a026375 n = a026374 (2 * n) n  -- Reinhard Zumkeller, Feb 22 2014
    
  • Maple
    seq( add(binomial(n,k)*binomial(2*k,k), k=0..n), n=0..30 ); # Detlef Pauly (dettodet(AT)yahoo.de), Nov 08 2001
    a := n -> simplify(GegenbauerC(n, -n, -3/2)):
    seq(a(n), n=0..22); # Peter Luschny, May 09 2016
  • Mathematica
    Table[SeriesCoefficient[1/Sqrt[1-6*x+5*x^2],{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
    (* From Michael Somos, May 11 2014: (Start) *)
    a[ n_] := Sum[ Binomial[n, k] Binomial[2 k, k], {k, 0, n}];
    a[ n_] := If[ n < 0, 0, Hypergeometric2F1[-n, 1/2, 1, -4]];
    a[ n_] := If[ n < 0, 0, Coefficient[(1 + 3 x + x^2)^n, x, n]];
    a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[Exp[3 x] BesselI[0,2 x], {x, 0, n}]];
    (* (End) *)
  • Maxima
    A026375(n):=coeff(expand((1+3*x+x^2)^n),x,n);
    makelist(A026375(n),n,0,12); /* Emanuele Munarini, Mar 02 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + 3*x + x^2)^n, n))}; /* Michael Somos, Sep 09 2002 */
    
  • PARI
    a(n)={my(v=Vec((1-x-x^2)^n)); sum(k=1,#v, v[k]^2);} \\ Joerg Arndt, Jul 06 2011
    
  • PARI
    {a(n) = sum(k=0, n, 5^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
    
  • PARI
    {a(n) = sum(k=0, n\2, 3^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019
    

Formula

Representation by Gauss's hypergeometric function, in Maple notation: a(n)=hypergeom([ -n, 1/2 ], [ 1 ], -4). - Karol A. Penson, Apr 20 2001
This sequence is the binomial transform of A000984. - John W. Layman, Aug 11 2000; proved by Emeric Deutsch, Oct 26 2002
E.g.f.: exp(3*x)*I_0(2x), where I_0 is Bessel function. - Michael Somos, Sep 17 2002
G.f.: 1/sqrt(1-6*x+5*x^2). - Emeric Deutsch, Oct 26 2002
D-finite with recurrence: n*a(n)-3*(2*n-1)*a(n-1)+5*(n-1)*a(n-2)=0 for n > 1. - Emeric Deutsch, Jan 24 2004
From Emeric Deutsch, Jan 30 2004: (Start)
a(n) = [t^n](1+3*t+t^2)^n;
a(n) = Sum_{j=ceiling(n/2)..n} 3^(2*j-n)*binomial(n, j)*binomial(j, n-j). (End)
a(n) = A026380(2*n-1) (n>0). - Emeric Deutsch, Feb 18 2004
G.f.: 1/(1-x-2*x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x/(1-x-x/(1-x... (continued fraction). - Paul Barry, Jan 06 2009
a(n) = sum of squared coefficients of (1+x-x^2)^n - see triangle A084610. - Paul D. Hanna, Jul 18 2009
a(n) = sum of squares of coefficients of (1-x-x^2)^n. - Joerg Arndt, Jul 06 2011
a(n) = (1/Pi)*Integral_{x=-2..2} ((3+x)^n/sqrt((2-x)*(2+x))) dx. - Peter Luschny, Sep 12 2011
a(n) ~ 5^(n+1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
G.f.: G(0)/(1-x), where G(k) = 1 + 4*x*(4*k+1)/( (4*k+2)*(1-x) - 2*x*(1-x)*(2*k+1)*(4*k+3)/(x*(4*k+3) + (1-x)*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 24 2013
0 = a(n)*(+25*a(n+1) - 45*a(n+2) + 10*a(n+3)) + a(n+1)*(-15*a(n+1) + 36*a(n+2) - 9*a(n+3)) + a(n+2)*(-3*a(n+2) + a(n+3)) for all n in Z. - Michael Somos, May 11 2014
a(n) = GegenbauerC(n, -n, -3/2). - Peter Luschny, May 09 2016
a(n) = Sum_{k=0..n} 5^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 3^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
a(n) = (1/Pi) * Integral_{x = -1..1} (1 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (5 - 4*x^2)^n/sqrt(1 - x^2) dx. - Peter Bala, Jan 27 2020
From Peter Bala, Jan 10 2022: (Start)
1 + x*exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + x + 3*x^2 + 10*x^3 + 36*x^4 + ... is the o.g.f. of A002212.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k. (End)
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

Extensions

Definition simplified by N. J. A. Sloane, Feb 16 2012

A124574 Triangle read by rows: row n is the first row of the matrix M[n]^(n-1), where M[n] is the n X n tridiagonal matrix with main diagonal (3,4,4,...) and super- and subdiagonals (1,1,1,...).

Original entry on oeis.org

1, 3, 1, 10, 7, 1, 37, 39, 11, 1, 150, 204, 84, 15, 1, 654, 1050, 555, 145, 19, 1, 3012, 5409, 3415, 1154, 222, 23, 1, 14445, 28063, 20223, 8253, 2065, 315, 27, 1, 71398, 146920, 117208, 55300, 16828, 3352, 424, 31, 1, 361114, 776286, 671052, 355236, 125964, 30660, 5079, 549, 35, 1
Offset: 1

Views

Author

Keywords

Comments

Column 1 yields A064613. Row sums yield A081671.
Triangle T(n,k), 0 <= k <= n, defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k+1). - Philippe Deléham, Feb 27 2007
Triangle T(n,k), 0 <= k <= n, read by rows given by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 3*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + 4*T(n-1,k) + T(n-1,k+1) for k >= 1. - Philippe Deléham, Mar 27 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = x*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + y*T(n-1,k) + T(n-1,k+1) for k >= 1. Other triangles arise from choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007
6^n = ((n+1)-th row terms) dot (first n+1 odd integers). Example: 6^4 = 1296 = (150, 204, 84, 15, 1) dot (1, 3, 5, 7, 9) = (150 + 612 + 420 + 105 + 9)= 1296. - Gary W. Adamson, Jun 15 2011
From Peter Bala, Sep 06 2022: (Start)
The following assume the row and column indexing start at 0.
Riordan array (f(x), x*g(x)), where f(x) = (1 - sqrt((1 - 6*x)/(1 - 2*x)))/(2*x) is the o.g.f. of A064613 and g(x) = (1 - 4*x - sqrt(1 - 8*x + 12*x^2))/(2*x^2) is the o.g.f. of A005572.
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x)*(1 + 4*x + x^2)^n expanded about the point x = 0.
T(n,k) = a(n,k) - a(n,k+1), where a(n,k) = Sum_{j = 0..n} binomial(n,j)* binomial(j,n-k-j)*4^(2*j+k-n). (End)

Examples

			Row 4 is (37,39,11,1) because M[4]= [3,1,0,0;1,4,1,0;0,1,4,1;0,0,1,4] and M[4]^3=[37,39,11,1; 39, 87, 51, 12; 11, 51, 88, 50; 1, 12, 50, 76].
Triangle starts:
    1;
    3,    1
   10,    7,   1;
   37,   39,  11,   1
  150,  204,  84,  15,  1;
  654, 1050, 555, 145, 19, 1;
From _Philippe Deléham_, Nov 07 2011: (Start)
Production matrix begins:
  3, 1
  1, 4, 1
  0, 1, 4, 1
  0, 0, 1, 4, 1
  0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 0, 0, 1, 4, 1
  0, 0, 0, 0, 0, 0, 0, 1, 4, 1 (End)
		

Crossrefs

Programs

  • Maple
    with(linalg): m:=proc(i,j) if i=1 and j=1 then 3 elif i=j then 4 elif abs(i-j)=1 then 1 else 0 fi end: for n from 3 to 11 do A[n]:=matrix(n,n,m): B[n]:=multiply(seq(A[n],i=1..n-1)) od: 1; 3,1; for n from 3 to 11 do seq(B[n][1,j],j=1..n) od; # yields sequence in triangular form
    T := (n,k) -> (-1)^(n-k)*simplify(GegenbauerC(n-k,-n+1,2)+GegenbauerC(n-k-1,-n+1,2 )): seq(print(seq(T(n,k),k=1..n)), n=1..10); # Peter Luschny, May 13 2016
  • Mathematica
    M[n_] := SparseArray[{{1, 1} -> 3, Band[{2, 2}] -> 4, Band[{1, 2}] -> 1, Band[{2, 1}] -> 1}, {n, n}]; row[1] = {1}; row[n_] := MatrixPower[M[n], n-1] // First // Normal; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 3, 4], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)

Formula

Sum_{k=0..n} (-1)^(n-k)*T(n,k) = (-2)^n. - Philippe Deléham, Feb 27 2007
Sum_{k=0..n} T(n,k)*(2*k+1) = 6^n. - Philippe Deléham, Mar 27 2007
T(n,k) = (-1)^(n-k)*(GegenbauerC(n-k,-n+1,2) + GegenbauerC(n-k-1,-n+1,2)). - Peter Luschny, May 13 2016

Extensions

Edited by N. J. A. Sloane, Dec 04 2006

A098409 Expansion of 1/(sqrt(1-3*x)*sqrt(1-7*x)).

Original entry on oeis.org

1, 5, 27, 155, 931, 5775, 36645, 236325, 1542195, 10153775, 67313377, 448691985, 3004182349, 20188647185, 136094684907, 919884469275, 6232016686995, 42305974804575, 287706424085745, 1959685788407025, 13367193276457881, 91295551930615005, 624255065007468207
Offset: 0

Views

Author

Paul Barry, Sep 07 2004

Keywords

Comments

Binomial transform of A081671. 3rd binomial transform of A000984. Binomial transform is A098410.
Largest coefficient of (1+5*x+x^2)^n; row sums of triangle in A126331. - Philippe Deléham, Oct 02 2007
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps come in five colors. - N-E. Fahssi, Feb 05 2008
Also number of paths from (0,0) to (n,0) using steps U=(1,1), H=(1,0) and D=(1,-1), the H steps can have five colors. - N-E. Fahssi, Mar 31 2008
Diagonal of rational function 1/(1 - (x^2 + 5*x*y + y^2)). - Gheorghe Coserea, Aug 01 2018

Crossrefs

Column 5 of A292627. Cf. A182401.

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(Sqrt[1-3*x]*Sqrt[1-7*x]),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 15 2012 *)
    CoefficientList[Series[1/(Sqrt[1-3x] Sqrt[1-7x]),{x,0,30}],x] (* Harvey P. Dale, Jun 20 2015 *)
  • Maxima
    a(n):=coeff(expand((1+5*x+x^2)^n),x^n);
    makelist(a(n),n,0,30); /* Emanuele Munarini, Apr 27 2012 */
    
  • PARI
    x='x+O('x^66); Vec(1/(sqrt(1-3*x)*sqrt(1-7*x))) \\ Joerg Arndt, May 11 2013
    
  • PARI
    {a(n) = sum(k=0, n, 7^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
    
  • PARI
    {a(n) = sum(k=0, n\2, 5^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019

Formula

G.f.: 1/sqrt(1-10*x+21*x^2).
E.g.f.: exp(5x)*BesselI(0, 2x).
a(n) = Sum_{k=0..n} 3^(n-k)*binomial(n,k)*binomial(2k,k). - Paul Barry, Mar 08 2005
a(n) = [x^n] (1+5*x+x^2)^n. - Emanuele Munarini, Apr 27 2012
D-finite with recurrence: n*a(n) = 5*(2*n-1)*a(n-1) - 21*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 15 2012
a(n) ~ 7^(n+1/2)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 15 2012
a(n) = Sum_{k=0..n} 7^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 5^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
From Peter Bala, Jan 10 2022: (Start)
exp(Sum_{n >= 1} a(n)*x^n/n) = 1 + 5*x + 26*x^2 + 140*x^3 + 777*x^4 + ... is the o.g.f. of A182401.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for prime p and positive integers n and k.
a(n) = (1/Pi) * Integral_{x = -1..1} (3 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (7 - 4*x^2)^n/sqrt(1 - x^2) dx. (End)
a(n) = (1/4)^n * Sum_{k=0..n} 3^k * 7^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A026376 a(n) is the number of integer strings s(0),...,s(n) counted by array T in A026374 that have s(n)=2; also a(n) = T(2n,n-1).

Original entry on oeis.org

1, 6, 30, 144, 685, 3258, 15533, 74280, 356283, 1713690, 8263596, 39938616, 193419915, 938430990, 4560542550, 22195961280, 108171753355, 527816696850, 2578310320610, 12607504827600, 61706212037295, 302275142049870, 1481908332595625, 7270432009471224
Offset: 1

Views

Author

Keywords

Comments

Number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1) and H=(2,0) and never going below the x-axis) from (0,0) to (2n+2,0), with exactly one peak at an even level. E.g., a(2)=6 because we have UUDDH, HUUDD, UDUUDD, UUDDUD, UUDHD and UHUDD. - Emeric Deutsch, Dec 28 2003
Number of left steps in all skew Dyck paths of semilength n+1. A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. Example: a(2)=6 because in the 10 (=A002212(3)) skew Dyck paths of semilength 3 ( namely UDUUDL, UUUDLD, UUDUDL, UUUDDL, UUUDLL and five Dyck paths that have no left steps) we have altogether 6 left steps. - Emeric Deutsch, Aug 05 2007
From Gary W. Adamson, May 17 2009: (Start)
Equals A026378 (1, 4, 17, 75, ...) convolved with A007317 (1, 2, 5, 15, 51, ...).
Equals A081671 (1, 3, 11, 45, ...) convolved with A002212 (1, 3, 10, 36, 137, ...).
(End)

Crossrefs

Programs

  • Maple
    a := n -> simplify(GegenbauerC(n-1, -n, -3/2)):
    seq(a(n), n=1..24); # Peter Luschny, May 09 2016
  • Mathematica
    Rest[CoefficientList[Series[(1-3*x-Sqrt[1-6*x+5*x^2])/(2*x*Sqrt[1-6*x+5*x^2]), {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 13 2014 *)
  • PARI
    a(n)=if(n<0,0,polcoeff((1+3*x+x^2)^n,n-1))
    
  • Sage
    A026376 = lambda n : n*hypergeometric([1, 3/2, 1-n], [1, 3], -4)
    [round(A026376(n).n(100)) for n in (1..24)] # Peter Luschny, Sep 16 2014
    
  • Sage
    # Recurrence:
    def A026376():
        x, y, n = 1, 1, 1
        while True:
            x, y = y, ((6*n + 3)*y - (5*n - 5)*x) / (n + 2)
            yield n*x
            n += 1
    a = A026376()
    [next(a) for i in (1..24)] # Peter Luschny, Sep 16 2014

Formula

E.g.f.: exp(3x)*I_1(2x), where I_1 is Bessel function. - Michael Somos, Sep 09 2002
G.f.: (1 - 3*z - t)/(2*z*t) where t = sqrt(1-6*z+5*z^2). - Emeric Deutsch, May 25 2003
a(n) = [t^(n+1)](1+3t+t^2)^n. a := n -> Sum_{j=ceiling((n+1)/2)..n} 3^(2j-n-1)*binomial(n, j)*binomial(j, n+1-j). - Emeric Deutsch, Jan 30 2004
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(2k, k+1). - Paul Barry, Sep 20 2004
a(n) = n*A002212(n). - Emeric Deutsch, Aug 05 2007
D-finite with recurrence (n+1)*a(n) - 9*n*a(n-1) + (23*n-27)*a(n-2) + 15*(-n+2)*a(n-3) = 0. - R. J. Mathar, Dec 02 2012
a(n) ~ 5^(n+1/2) / (2*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 13 2014
a(n) = n*hypergeometric([1, 3/2, 1-n],[1, 3],-4). - Peter Luschny, Sep 16 2014
a(n) = GegenbauerC(n-1, -n, -3/2). - Peter Luschny, May 09 2016

A104454 Expansion of 1/(sqrt(1-5x)*sqrt(1-9x)).

Original entry on oeis.org

1, 7, 51, 385, 2995, 23877, 194109, 1602447, 13389075, 112935445, 959783881, 8206116387, 70507643101, 608271899515, 5265458413875, 45711784088145, 397829544860115, 3469772959954245, 30319709631711225, 265383615634224675, 2326318766651511945, 20419439617056272415
Offset: 0

Views

Author

Paul Barry, Mar 08 2005

Keywords

Comments

Fifth binomial transform of A000984. In general, the k-th binomial transform of A000984 will have g.f. 1/(sqrt(1-k*x)*sqrt(1-(k+4)*x)) and a(n)=sum{i=0..n, C(n,i)C(2i,i)k^(n-i)}.
Diagonal of rational function 1/(1 - (x^2 + 7*x*y + y^2)). - Gheorghe Coserea, Aug 03 2018

Crossrefs

Column 7 of A292627.

Programs

  • Mathematica
    CoefficientList[Series[1/(Sqrt[1-5x] Sqrt[1-9x]),{x,0,30}],x] (* Harvey P. Dale, Apr 11 2012 *)
  • PARI
    x='x+O('x^66); Vec(1/sqrt(1-14*x+45*x^2)) \\ Joerg Arndt, May 13 2013
    
  • PARI
    {a(n) = sum(k=0, n, 9^(n-k)*(-1)^k*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, Apr 22 2019
    
  • PARI
    {a(n) = sum(k=0, n\2, 7^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k))} \\ Seiichi Manyama, May 04 2019

Formula

G.f.: 1/sqrt(1-14*x+45*x^2).
E.g.f.: exp(7x)*BesselI(0, 2x)
a(n) = Sum_{k=0..n} 5^(n-k)*binomial(n,k)*binomial(2k,k).
D-finite with recurrence: n*a(n) = 7*(2*n-1)*a(n-1) - 45*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 3^(2*n+1)/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 17 2012
a(n) = Sum_{k=0..n} 9^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). - Seiichi Manyama, Apr 22 2019
a(n) = Sum_{k=0..floor(n/2)} 7^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). - Seiichi Manyama, May 04 2019
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * 9^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A292627 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*x)*BesselI(0,2*x).

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 2, 3, 0, 1, 3, 6, 7, 6, 1, 4, 11, 20, 19, 0, 1, 5, 18, 45, 70, 51, 20, 1, 6, 27, 88, 195, 252, 141, 0, 1, 7, 38, 155, 454, 873, 924, 393, 70, 1, 8, 51, 252, 931, 2424, 3989, 3432, 1107, 0, 1, 9, 66, 385, 1734, 5775, 13236, 18483, 12870, 3139, 252, 1, 10, 83, 560, 2995, 12276, 36645, 73392, 86515, 48620, 8953, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 20 2017

Keywords

Comments

A(n,k) is the k-th binomial transform of A126869 evaluated at n.

Examples

			E.g.f. of column k: A_k(x) =  1 + k*x/1! + (k^2 + 2)*x^2/2! + (k^3 + 6*k)*x^3/3! + (k^4 + 12*k^2 + 6)*x^4/4! + (k^5 + 20*k^3 + 30*k)*x^5/5! + ...
Square array begins:
  1,   1,    1,    1,     1,     1,  ...
  0,   1,    2,    3,     4,     5,  ...
  2,   3,    6,   11,    18,    27,  ...
  0,   7,   20,   45,    88,   155,  ...
  6,  19,   70,  195,   454,   931,  ...
  0,  51,  252,  873,  2424,  5775,  ...
		

Crossrefs

Rows n=0..2 give A000012, A001477, A059100.
Main diagonal gives A186925.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[Exp[k x] BesselI[0, 2 x], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/Sqrt[(1 + 2 x - k x) (1 - 2 x - k x)], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

O.g.f. of column k: 1/sqrt( (1 - (k-2)*x)*(1 - (k+2)*x) ).
E.g.f. of column k: exp(k*x)*BesselI(0,2*x).
From Seiichi Manyama, May 01 2019: (Start)
A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + x^2)^n.
A(n,k) = Sum_{j=0..n} (k-2)^(n-j) * binomial(n,j) * binomial(2*j,j).
A(n,k) = Sum_{j=0..n} (k+2)^(n-j) * (-1)^j * binomial(n,j) * binomial(2*j,j).
n * A(n,k) = k * (2*n-1) * A(n-1,k) - (k^2-4) * (n-1) * A(n-2,k). (End)
A(n,k) = Sum_{j=0..floor(n/2)} k^(n-2*j) * binomial(n,2*j) * binomial(2*j,j). - Seiichi Manyama, May 04 2019
T(n,k) = (1/Pi) * Integral_{x = -1..1} (k - 2 + 4*x^2)^n/sqrt(1 - x^2) dx = (1/Pi) * Integral_{x = -1..1} (k + 2 - 4*x^2)^n/sqrt(1 - x^2) dx. - Peter Bala, Jan 27 2020
A(n,k) = (1/4)^n * Sum_{j=0..n} (k-2)^j * (k+2)^(n-j) * binomial(2*j,j) * binomial(2*(n-j),n-j). - Seiichi Manyama, Aug 18 2025

A109187 Triangle read by rows: T(n,k) is number of Grand Motzkin paths of length n having k (1,0)-steps.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 6, 0, 12, 0, 1, 0, 30, 0, 20, 0, 1, 20, 0, 90, 0, 30, 0, 1, 0, 140, 0, 210, 0, 42, 0, 1, 70, 0, 560, 0, 420, 0, 56, 0, 1, 0, 630, 0, 1680, 0, 756, 0, 72, 0, 1, 252, 0, 3150, 0, 4200, 0, 1260, 0, 90, 0, 1, 0, 2772, 0, 11550, 0, 9240, 0, 1980, 0, 110, 0, 1
Offset: 0

Views

Author

Emeric Deutsch, Jun 21 2005

Keywords

Comments

A Grand Motzkin path is a path in the half-plane x >= 0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).
From Peter Bala, Feb 11 2017: (Start)
Consider an infinite 1-dimensional integer lattice with an oriented self-loop at each vertex. Then T(n,k) equals the number of walks of length n from a vertex to itself having k loops. There is a bijection between such walks and Grand Motzkin paths which takes a right step and a left step on the lattice to an up step U and a down step D of a Grand Motzkin path respectively, and takes traversing a loop on the lattice to the horizontal step H. See A282252 for the corresponding triangle of walks on a 2-dimensional lattice with self-loops. (End)

Examples

			T(3,1)=6 because we have hud,hdu,udh,duh,uhd,dhu, where u=(1,1),d=(1,-1), h=(1,0).
Triangle begins:
n\k   [0]  [1]   [2]   [3]   [4]   [5]   [6]  [7]  [8]  [9] [10]
[0]    1;
[1]    0,   1;
[2]    2,   0,    1;
[3]    0,   6,    0,    1;
[4]    6,   0,   12,    0,    1;
[5]    0,  30,    0,   20,    0,    1;
[6]   20,   0,   90,    0,   30,    0,    1;
[7]    0, 140,    0,  210,    0,   42,    0,   1;
[8]   70,   0,  560,    0,  420,    0,   56,   0,   1;
[9]    0, 630,    0, 1680,    0,  756,    0,  72,   0,   1;
[10] 252,   0, 3150,    0, 4200,    0, 1260,   0,  90,   0,   1;
[11] ...
From _Peter Bala_, Feb 11 2017: (Start)
The infinitesimal generator begins
      0
      0    0
      2    0     0
      0    6     0     0
     -6    0    12     0     0
      0  -30     0    20     0   0
     80    0   -90     0    30   0   0
      0  560     0  -210     0  42   0  0
  -2310    0  2240     0  -420   0  56  0  0
  ....
and equals the generalized exponential Riordan array [log(Bessel_I(0,2x)),x], and so has integer entries. (End)
		

Crossrefs

Diagonal of rational function R(x, y, t) = 1/(1 - (x^2 + t*x*y + y^2)) with respect to x,y, i.e., T(n,k) = [(xy)^n*t^k] R(x,y,t). For t=0..7 we have the diagonals: A126869(t=0, column 0), A002426(t=1, row sums), A000984(t=2), A026375(t=3), A081671(t=4), A098409(t=5), A098410(t=6), A104454(t=7).

Programs

  • Maple
    G:=1/sqrt((1-t*z)^2-4*z^2):Gser:=simplify(series(G,z=0,15)): P[0]:=1: for n from 1 to 13 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 13 do seq(coeff(t*P[n],t^k),k=1..n+1) od;
    with(PolynomialTools): CL := p -> CoefficientList(simplify(p), x):
    C := (n,x) -> binomial(2*n,n)*hypergeom([-n,-n],[-n+1/2],1/2-x/4):
    seq(print(CL(C(n,x))), n=0..11); # Peter Luschny, Jan 23 2018
  • Mathematica
    p[0] := 1; p[n_] := GegenbauerC[n, -n , -x/2];
    Flatten[Table[CoefficientList[p[n], x], {n, 0, 11}]] (* Peter Luschny, Jan 23 2018 *)
  • PARI
    T(n,k) = if ((n-k)%2, 0, binomial(n,k)*binomial(n-k, (n-k)/2));
    concat(vector(12, n, vector(n, k, T(n-1, k-1)))) \\ Gheorghe Coserea, Sep 06 2018

Formula

G.f.: 1/sqrt((1-tz)^2-4z^2).
Row sums yield the central trinomial coefficients (A002426).
T(2n+1, 0) = 0.
T(2n, 0) = binomial(2n,n) (A000984).
Sum_{k=0..n} k*T(n,k) = A109188(n).
Except for the order, same rows as those of A105868.
Column k has e.g.f. (x^k/k!)*Bessel_I(0,2x). - Paul Barry, Mar 11 2006
T(n,k) = binomial((n+k)/2,k)*binomial(n,(n+k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Sep 18 2007
Coefficient array of the polynomials P(n,x) = x^n*hypergeom([1/2-n/2,-n/2], [1], 4/x^2). - Paul Barry, Oct 04 2008
G.f.: 1/(1-xy-2x^2/(1-xy-x^2/(1-xy-x^2/(1-xy-x^2/(1-.... (continued fraction). - Paul Barry, Jan 28 2009
From Paul Barry, Apr 21 2010: (Start)
Exponential Riordan array [Bessel_I(0,2x), x].
Coefficient array of the polynomials P(n,x) = Sum_{k=0..floor(n/2)} C(n,2k)*C(2k, k)*x^(n - 2k).
Diagonal sums are the aerated central Delannoy numbers (A001850 with interpolated zeros). (End)
From Peter Bala, Feb 11 2017: (Start)
T(n,k) = binomial(n,k)*binomial(n-k,floor((n-k)/2))*(1 + (-1)^(n-k))/2.
T(n,k) = (n/k) * T(n-1,k-1).
T(n,k) = the coefficient of H^k in the expansion of (H + U + 1/U)^n.
n-th row polynomial R(n,t) = Sum_{k = 0..floor(n/2)} binomial(n,2*k) * binomial(2*k,k) * t^(n-2*k) = coefficient of x^n in the expansion of (1 + t*x + x^2)^n.
R(n,t) = Sum_{k = 0..n} binomial(n,k)*binomial(2*k,k)*(t - 2)^(n-k).
d/dt(R(n,t)) = n*R(n-1,t).
R(n,t) = (1/Pi) * Integral_{x = 0..Pi} (t + 2*cos(x))^n dx.
Moment representation on a finite interval: R(n,t) = 1/Pi * Integral_{x = t-2 .. t+2} x^n/sqrt((t + 2 - x)*(x - t + 2)) dx.
Recurrence: n*R(n,t) = t*(2*n - 1)*R(n-1,t) - (t^2 - 4)*(n - 1)*R(n-2,t) with R(0,t) = 1 and R(1,t) = t.
R(n,t) = A002426 (t = 1), A000984 (t = 2), A026375 (t = 3), A081671 (t = 4), A098409 (t = 5), A098410 (t = 6) and A104454(t = 7).
The zeros of the row polynomials appear to lie on the imaginary axis in the complex plane. Also, the zeros of R(n,t) and R(n+1,t) appear to interlace on the imaginary axis.
The polynomials R(n,1 + t) are the row polynomials of A171128. (End)
From Peter Luschny, Jan 23 2018: (Start)
These are the coefficients of the polynomials G(n, -n , -x/2) where G(n, a, x) denotes the n-th Gegenbauer polynomial.
These polynomials can also be expressed as C(n, x) = binomial(2*n,n)*hypergeom([-n, -n], [-n+1/2], 1/2-x/4). (End)

A098473 Triangle T(n,k) read by rows, T(n, k) = binomial(2*k, k)*binomial(n, k), 0<=k<=n.

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 6, 18, 20, 1, 8, 36, 80, 70, 1, 10, 60, 200, 350, 252, 1, 12, 90, 400, 1050, 1512, 924, 1, 14, 126, 700, 2450, 5292, 6468, 3432, 1, 16, 168, 1120, 4900, 14112, 25872, 27456, 12870, 1, 18, 216, 1680, 8820, 31752, 77616, 123552, 115830
Offset: 0

Views

Author

Paul Barry, Sep 09 2004

Keywords

Comments

This sequence gives the coefficients of the Jensen polynomials (increasing powers of x) of degree n and shift 0 for the central binomial sequence A000984. For a definition of Jensen polynomials see a comment in A094436. - Wolfdieter Lang, Jun 25 2019

Examples

			Rows begin
  1;
  1,  2;
  1,  4,  6;
  1,  6, 18,  20;
  1,  8, 36,  80,  70;
  1, 10, 60, 200, 350, 252;
		

Crossrefs

Row sums are A026375.
Antidiagonal sums are A026569.
Principal diagonal is A000984.

Programs

  • Maple
    A098473 := proc(n,k) binomial(2*k,k)*binomial(n,k) ; end proc:
  • Mathematica
    Table[Binomial[2k,k]Binomial[n,k],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Aug 15 2020 *)
  • PARI
    T(n,k)=binomial(2*k, k)*binomial(n, k);
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print()); /* as triangle */

Formula

T(n, k) = binomial(2*k, k)*binomial(n, k).
Sum_{k=0..n} T(n,k)*x^(n-k) = A126869(n), A002426(n), A000984(n), A026375(n), A081671(n), A098409(n), A098410(n) for x = -2, -1, 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Sep 28 2007
From Peter Bala, Jun 06 2011: (Start)
O.g.f.: 1/sqrt(1 - t)*1/sqrt(1 - t*(1 + 4*x)) = 1 + (2*x + 1)*t + (1 + 4*x + 6*x^2)*t^2 + ....
Let R_n(x) denote the row generating polynomials of this triangle, which begin
R_1(x) = 1 + 2*x, R_2(x) = 1 + 4*x + 6*x^2, R_3(x) = 1 + 6*x + 18*x^2 + 20*x^3.
Dasbach gives the following slowly converging series for the logarithm function:
log(x) = Sum_{n >= 1} 1/n*R_n(-1/x), valid for x >= 4.
The polynomials (1 - x)^n*R_n(x/(1 - x)) appear to be the row polynomials of A135091 (see also A171128). (End)

A171128 A117852*A130595 as lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 7, 9, 3, 1, 19, 28, 18, 4, 1, 51, 95, 70, 30, 5, 1, 141, 306, 285, 140, 45, 6, 1, 393, 987, 1071, 665, 245, 63, 7, 1, 1107, 3144, 3948, 2856, 1330, 392, 84, 8, 1, 3139, 9963, 14148, 11844, 6426, 2394, 588, 108, 9, 1
Offset: 0

Views

Author

Philippe Deléham, Dec 04 2009

Keywords

Comments

Mirror image of triangle in A135091.
Exponential Riordan array [exp(x)*Bessel_I(0,2*x), x] = A007318 * A109187. - Peter Bala, Feb 12 2017

Examples

			Triangle begins:
   1
   1  1
   3  2  1
   7  9  3 1
  19 28 18 4 1
  ...
From _Peter Bala_, Feb 12 2017: (Start)
The infinitesimal generator begins
      0
      1    0
      2    2     0
      0    6     3     0
     -6    0    12     4     0
      0  -30     0    20     5   0
     80    0   -90     0    30   6   0
      0  560     0  -210     0  42   7  0
  -2310    0  2240     0  -420   0  56  8  0
  ....
and equals the generalized exponential Riordan array [x + log(Bessel_I(0,2*x)), x], and so has integer entries. (End)
		

Crossrefs

A000984 (row sums), A135091 (row reversed). Cf. A002426, A117852, A130595, A109187.

Programs

  • Mathematica
    A002426[n_] := Sum[Binomial[n, 2*k]*Binomial[2*k, k], {k, 0, Floor[n/2]}]; Table[ Binomial[n, k]*A002426[n - k], {n, 0, 99}, {k, 0, n} ]//Flatten (* G_. C. Greubel_, Mar 07 2017 *)

Formula

Sum_{k=0..n} T(n,k)*x^k = A126869(n), A002426(n), A000984(n), A026375(n), A081671(n), A098409(n), A098410(n), A104454(n) for x = -1,0,1,2,3,4,5,6 respectively.
T(n,k) = binomial(n,k)*A002426(n-k). - Philippe Deléham, Dec 12 2009
From Peter Bala, Feb 12 2017: (Start)
T(n,k) = Sum_{j = 0..floor((n-k)/2)} n!/((n-k-2*j)!*j!^2*k!).
T(n,k) = n/k*T(n-1,k-1) with T(n,0) = A002426(n).
(n - k)^2*T(n,k) = n*(2*n - 2*k - 1)*T(n-1,k) + 3*n*(n - 1)*T(n-2,k).
O.g.f. = 1/sqrt((1 - (1 + t)*z)^2 - 4*z^2) = 1 + (1 + t)*z + (3 + 2*t + t^2)*z^2 + (7 + 9*t + 3*t^2 + t^3 )*z^3 + ....
E.g.f. Bessel_I(0,2*x) * exp((1 + t)*x) = 1 + (1 + t)*z + (3 + 2*t + t^2)*z^2/2! + (7 + 9*t + 3*t^2 + t^3 )*z^3/3! + ....
n-th row polynomial R(n,t) = Sum_{k = 0..floor(n/2)} binomial(n,2*k)*binomial(2*k,k)*(1 + t)^(n-2*k) = coefficient of x^n in the expansion of (1 + (1 + t)*x + x^2)^n.
The polynomials R(n, t - 1) are the row polynomials of A109187.
d/dt(R(n,t)) = n*R(n-1,t).
Moment representation on a finite interval: R(n,t) = 1/Pi * Integral_{x = t-1 .. t+3} x^n/sqrt((t + 3 - x)*(x - t + 1)) dx.
The zeros of the row polynomials appear to lie on the vertical line Re(z) = -1 in the complex plane, and the zeros of R(n,t) and R(n+1,t) appear to interlace along this line.
(End)
Showing 1-10 of 30 results. Next