cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A117852 Mirror image of A098473 formatted as a triangular array.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 20, 18, 6, 1, 70, 80, 36, 8, 1, 252, 350, 200, 60, 10, 1, 924, 1512, 1050, 400, 90, 12, 1, 3432, 6468, 5292, 2450, 700, 126, 14, 1, 12870, 27456, 25872, 14112, 4900, 1120, 168, 16, 1, 48620, 115830, 123552, 77616, 31752, 8820, 1680, 216, 18, 1
Offset: 0

Views

Author

Farkas Janos Smile (smile_farkasjanos(AT)yahoo.com.au), Dec 21 2006

Keywords

Examples

			Triangle begins:
    1;
    2,   1;
    6,   4,   1;
   20,  18,   6,   1;
   70,  80,  36,   8,   1;
  252, 350, 200,  60,  10,   1;
  ...
		

Crossrefs

Cf. A098473.

Programs

  • Maple
    c:=n->binomial(2*n, n): T:=proc(n, k) if k<=n then binomial(n, k)*c(n-k) else 0 fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; #
  • Mathematica
    Table[ Binomial[n, k]*Binomial[2*n - 2*k, n - k], {n,0,10}, {k,0,n} ] // Flatten (* G. C. Greubel, Mar 07 2017 *)

Formula

Sum_{k=0..n} T(n,k)*x^k = A126869(n), A002426(n), A000984(n), A026375(n), A081671(n), A098409(n), A098410(n) for x = -2, -1, 0, 1, 2, 3, 4 respectively. - Philippe Deléham, Sep 28 2007
T(n,k) = binomial(n,k)*A000984(n-k). - Philippe Deléham, Dec 12 2009
O.g.f.: 1/sqrt( (1 - x*t)*(1 - (x + 4)*t) ) = 1 + (2 + x)*t + (6 + 4*x + x^2)*t^2 + .... - Peter Bala, Nov 10 2013

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 12 2007

A098474 Triangle read by rows, T(n,k) = C(n,k)*C(2*k,k)/(k+1), n >= 0, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 20, 14, 1, 5, 20, 50, 70, 42, 1, 6, 30, 100, 210, 252, 132, 1, 7, 42, 175, 490, 882, 924, 429, 1, 8, 56, 280, 980, 2352, 3696, 3432, 1430, 1, 9, 72, 420, 1764, 5292, 11088, 15444, 12870, 4862, 1, 10, 90, 600, 2940, 10584, 27720
Offset: 0

Views

Author

Paul Barry, Sep 09 2004

Keywords

Comments

A Catalan scaled binomial matrix.
From Philippe Deléham, Sep 01 2005: (Start)
Table U(n,k), k >= 0, n >= 0, read by antidiagonals, begins:
row k = 0: 1, 1, 2, 5, 14, ... is A000108
row k = 1: 1, 2, 6, 20, 70, ... is A000984
row k = 2: 1, 3, 12, 50, 280, ... is A007854
row k = 3: 1, 4, 20, 104, 548, ... is A076035
row k = 4: 1, 5, 30, 185, 1150, ... is A076036
G.f. for row k: 1/(1-(k+1)*x*C(x)) where C(x) is the g.f. = for Catalan numbers A000108.
U(n,k) = Sum_{j=0..n} A106566(n,j)*(k+1)^j. (End)
This sequence gives the coefficients (increasing powers of x) of the Jensen polynomials for the Catalan sequence A000108 of degree n and shift 0. For the definition of Jensen polynomials for a sequence see a comment in A094436. - Wolfdieter Lang, Jun 25 2019

Examples

			Rows begin:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  6,   5;
  1, 4, 12,  20,  14;
  1, 5, 20,  50,  70,  42;
  1, 6, 30, 100, 210, 252, 132;
  ...
Row 3: t*(1 - 3*t + 6*t^2 - 5*t^3)/(1 - 4*t)^(9/2) = 1/2*Sum_{k >= 1} k*(k+1)*(k+2)*(k+3)/4!*binomial(2*k,k)*t^k. - _Peter Bala_, Jun 13 2016
		

Crossrefs

Row sums are A007317.
Antidiagonal sums are A090344.
Principal diagonal is A000108.
Mirror image of A124644.

Programs

  • Maple
    p := proc(n) option remember; if n = 0 then 1 else normal((x*(1 + 4*x)*diff(p(n-1, x), x) + (2*x + n + 1)*p(n-1, x))/(n + 1)) fi end:
    row := n -> local k; seq(coeff(p(n), x, k), k = 0..n):
    for n from 0 to 6 do row(n) od;  # Peter Luschny, Jun 21 2023
  • Mathematica
    Table[Binomial[n, k] Binomial[2 k, k]/(k + 1), {n, 0, 10}, {k, 0, n}] // Flatten (* or *)
    Table[(-1)^k*CatalanNumber[k] Pochhammer[-n, k]/k!, {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Feb 17 2017 *)
  • Python
    from functools import cache
    @cache
    def A098474row(n: int) -> list[int]:
        if n == 0: return [1]
        a = A098474row(n - 1) + [0]
        row = [0] * (n + 1)
        row[0] = 1; row[1] = n
        for k in range(2, n + 1):
            row[k] = (a[k] * (n + k + 1) + a[k - 1] * (4 * k - 2)) // (n + 1)
        return row  # Peter Luschny, Jun 22 2023
  • Sage
    def A098474(n,k):
        return (-1)^k*catalan_number(k)*rising_factorial(-n,k)/factorial(k)
    for n in range(7): [A098474(n,k) for k in (0..n)] # Peter Luschny, Feb 05 2015
    

Formula

G.f.: 2/(1-x+(1-x-4*x*y)^(1/2)). - Vladeta Jovovic, Sep 11 2004
E.g.f.: exp(x*(1+2*y))*(BesselI(0, 2*x*y)-BesselI(1, 2*x*y)). - Vladeta Jovovic, Sep 11 2004
G.f.: 1/(1-x-xy/(1-xy/(1-x-xy/(1-xy/(1-x-xy/(1-xy/(1-x-xy/(1-xy/(1-... (continued fraction). - Paul Barry, Feb 11 2009
Sum_{k=0..n} T(n,k)*x^(n-k) = A126930(n), A005043(n), A000108(n), A007317(n+1), A064613(n), A104455(n) for x = -2, -1, 0, 1, 2, 3 respectively. - Philippe Deléham, Dec 12 2009
T(n,k) = (-1)^k*Catalan(k)*Pochhammer(-n,k)/k!. - Peter Luschny, Feb 05 2015
O.g.f.: [1 - sqrt(1-4tx/(1-x))]/(2tx) = 1 + (1+t) x + (1+2t+2t^2) x^2 + (1+3t+6t^2+5t^3) x^3 + ... , generating the polynomials of this entry, reverse of A124644. See A011973 for a derivation and the inverse o.g.f., connected to the Fibonacci, Chebyshev, and Motzkin polynomials. See also A267633. - Tom Copeland, Jan 25 2016
From Peter Bala, Jun 13 2016: (Start)
The o.g.f. F(x,t) = ( 1 - sqrt(1 - 4*t*x/(1 - x)) )/(2*t*x) satisfies the partial differential equation d/dx(x*(1 - x)*F) - x*t*(1 + 4*t)*dF/dt - 2*x*t*F = 1. This gives a recurrence for the row polynomials: (n + 2)*R(n+1,t) = t*(1 + 4*t)*R'(n,t) + (2*t + n + 2)*R(n,t), where the prime ' indicates differentiation with respect to t.
Equivalently, setting Q(n,t) = t^(n+2)*R(n,-t)/(1 - 4*t)^(n + 3/2) we have t^2*d/dt(Q(n,t)) = (n + 2)*Q(n+1,t).
This leads to the following expansions:
Q(0,t) = (1/2)*Sum_{k >= 1} k*binomial(2*k,k)*t^(k+1)
Q(1,t) = (1/2)*Sum_{k >= 1} k*(k+1)/2!*binomial(2*k,k)*t^(k+2)
Q(2,t) = (1/2)*Sum_{k >= 1} k*(k+1)*(k+2)/3!*binomial(2*k,k) *t^(k+3) and so on. (End)
Sum_{k=0..n} T(n,k)*x^k = A007317(n+1), A162326(n+1), A337167(n) for x = 1, 2, 3 respectively. - Sergii Voloshyn, Mar 31 2022

Extensions

New name using a formula of Paul Barry by Peter Luschny, Feb 05 2015

A135091 A007318 * triangle M, where M = A002426 * 0^(n-k), 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 9, 7, 1, 4, 18, 28, 19, 1, 5, 30, 70, 95, 51, 1, 6, 45, 140, 285, 306, 141, 1, 7, 63, 245, 665, 1071, 987, 393, 1, 8, 84, 392, 1330, 2856, 3948, 3144, 1107, 1, 9, 108, 588, 2394, 6426, 11844, 14148, 9963, 3139
Offset: 0

Views

Author

Gary W. Adamson, Nov 18 2007

Keywords

Comments

Right border = A002426.
Row sums = A000984: (1, 2, 6, 20, 70, 252, ...).
The n-th row of this triangle lists the coefficients of the polynomial: p := (1/Pi)*Integral_{s=0..Pi} (1 + t - 2*t*cos(s))^n; Pi / 1 | n p := ---- | (1 + t - 2 t cos(s)) ds Pi | / 0 for example n=5 then 4 2 3 p = 19 t + 18 t + 28 t + 4 t + 1. - Theodore Kolokolnikov, Oct 09 2010

Examples

			First few rows of the triangle:
  1;
  1, 1;
  1, 2,  3;
  1, 3,  9,   7;
  1, 4, 18,  28,  19;
  1, 5, 30,  70,  95,   51;
  1, 6, 45, 140, 285,  306, 141;
  1, 7, 63, 245, 665, 1071, 987, 393;
  ...
		

Crossrefs

Formula

A007318 * triangle M, where M = A002426 * 0^(n-k), 0 <= k <= n; i.e., M = an infinite lower triangular matrix with A002426 as the right border and the rest zeros.
O.g.f. appears to be (1/sqrt(1-t*(1-x)))*1/sqrt(1-t*(1+3*x)) = 1 + (1+x)*t + (1 + 2*x + 3*x^2)*t^2 + ....
See A098473.

A163945 Triangle interpolating between (-1)^n (A033999) and the swinging factorial function (A056040) restricted to odd indices (2n+1)$ (A002457), read by rows.

Original entry on oeis.org

1, -1, 6, 1, -12, 30, -1, 18, -90, 140, 1, -24, 180, -560, 630, -1, 30, -300, 1400, -3150, 2772, 1, -36, 450, -2800, 9450, -16632, 12012, -1, 42, -630, 4900, -22050, 58212, -84084, 51480, 1, -48, 840, -7840, 44100, -155232, 336336, -411840, 218790
Offset: 0

Views

Author

Peter Luschny, Aug 07 2009

Keywords

Examples

			Triangle begins:
   1;
  -1,   6;
   1, -12,   30;
  -1,  18,  -90,   140;
   1, -24,  180,  -560,   630;
  -1,  30, -300,  1400, -3150,   2772;
   1, -36,  450, -2800,  9450, -16632, 12012;
		

Crossrefs

Row sums are the inverse binomial transform of the beta numbers (A163872).

Programs

  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif
    irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    a := proc(n, k) (-1)^(n-k)*binomial(n,k)*swing(2*k+1) end:
    seq(print(seq(a(n,k),k=0..n)),n=0..8);
  • Mathematica
    T[n_,k_] := ((-1)^(Mod[k,2]+n)*((2*k+1)!/(k!)^2)*Binomial[n,n-k]);
    Flatten[Table[T[n,k],{n,0,8},{k,0,n}]] (* Detlef Meya, Oct 07 2023 *)

Formula

For n >= 0, k >= 0, T(n, k) = (-1)^(n-k) binomial(n,k) (2*k+1)$ where i$ denotes the swinging factorial of i (A056040).
Conjectural g.f.: sqrt(1 + t)/(1 + (1 - 4*x)*t)^(3/2) = 1 + (-1 + 6*x)*t + (1 - 12*x + 30*x^2)*t^2 + .... - Peter Bala, Nov 10 2013
T(n, k) = ((-1)^(k mod 2) + n)*((2*k + 1)!/(k!)^2)*binomial(n, n - k). - Detlef Meya, Oct 07 2023
Showing 1-4 of 4 results.