cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A360592 G.f.: Sum_{k>=0} (1 + k*x)^k * x^k.

Original entry on oeis.org

1, 1, 2, 5, 14, 44, 149, 543, 2096, 8539, 36444, 162380, 752181, 3612037, 17933038, 91843329, 484280386, 2624400428, 14595111277, 83178971707, 485218783724, 2893881790823, 17628815344600, 109585578277012, 694575012732989, 4485139961090153, 29486515600393930
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 13 2023

Keywords

Crossrefs

Programs

  • Maple
    N:= 40:
    S:= series(add((1+k*x)^k*x^k, k=0..N),x,N+1):
    seq(coeff(S,x,k),k=0..N); # Robert Israel, Feb 13 2023
  • Mathematica
    nmax = 30; CoefficientList[Series[Sum[(1 + k*x)^k * x^k, {k, 0, nmax}], {x, 0, nmax}], x]
    Flatten[{1, Table[Sum[Binomial[n-k, k] * (n-k)^k, {k, 0, n/2}], {n, 1, 30}]}]
  • PARI
    {a(n) = polcoeff(sum(m=0, n, (1 + m*x)^m * x^m + x*O(x^n)), n)};
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k) * (n-k)^k.
a(n) ~ exp(exp(1/2)*sqrt(n/2) - 3*exp(1)/8) * n^(n/2) / 2^(n/2 + 1) * (1 + ((exp(1/2) + exp(-1/2))/2^(5/2) + 11*exp(3/2)/2^(9/2))/sqrt(n)).

A186925 Coefficient of x^n in (1+n*x+x^2)^n.

Original entry on oeis.org

1, 1, 6, 45, 454, 5775, 88796, 1602447, 33213510, 777665691, 20302315252, 584774029983, 18422140045596, 630132567760345, 23257790717110392, 921362075184792825, 38994274473840538182, 1755943506127367745795, 83829045032101462204100, 4229207755493569286374167
Offset: 0

Views

Author

Emanuele Munarini, Mar 02 2011

Keywords

Crossrefs

Main diagonal of A292627.

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+n*x+x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 02 2011
    
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^(n-2*k), {k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)
    Table[GegenbauerC[n, -n, -n/2] + KroneckerDelta[n, 0], {n, 0, 100}] (* Emanuele Munarini, Oct 20 2016 *)
    Table[SeriesCoefficient[(1 + n*x + x^2)^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 13 2023 *)
  • Maxima
    a(n):=coeff(expand((1+n*x+x^2)^n),x,n);
    
  • Maxima
    makelist(ultraspherical(n,-n,-n/2),n,0,12); /* Emanuele Munarini, Oct 20 2016 */
    makelist(a(n),n,0,20);
    
  • PARI
    {a(n) = sum(k=0, n, (n-2)^(n-k)*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, May 01 2019
    
  • PARI
    a(n) = polcoef((1+n*x+x^2)^n, n); \\ Michel Marcus, May 01 2019

Formula

a(n) = [x^n] (1+n*x+x^2)^n.
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, n-2*k)*n^(n-2*k).
a(n) ~ BesselI(0,2) * n^n. - Vaclav Kotesovec, Apr 17 2014
a(n) = GegenbauerPoly(n,-n,-n/2). - Emanuele Munarini, Oct 20 2016
From Ilya Gutkovskiy, Sep 20 2017: (Start)
a(n) = [x^n] 1/sqrt((1 + 2*x - n*x)*(1 - 2*x - n*x)).
a(n) = n! * [x^n] exp(n*x)*BesselI(0,2*x). (End)
From Seiichi Manyama, May 01 2019: (Start)
a(n) = Sum_{k=0..n} (n-2)^(n-k) * binomial(n,k) * binomial(2*k,k).
a(n) = Sum_{k=0..n} (n+2)^(n-k) * (-1)^k * binomial(n,k) * binomial(2*k,k). (End)
a(n) = (1/4)^n * Sum_{k=0..n} (n-2)^k * (n+2)^(n-k) * binomial(2*k,k) * binomial(2*(n-k),n-k). - Seiichi Manyama, Aug 18 2025

A187021 Coefficient of x^n in (1 + (n+1)*x + n*x^2)^n.

Original entry on oeis.org

1, 2, 13, 136, 1921, 33876, 712909, 17383584, 481003009, 14869654300, 507406003501, 18928740714192, 765897591633409, 33392080668673832, 1559976990077534253, 77717020110946293376, 4111810085670587224065, 230190619432401207833004, 13591965974806603671569101
Offset: 0

Views

Author

Emanuele Munarini, Mar 02 2011

Keywords

Crossrefs

Main diagonal of A307883.

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+(n+1)*x+n*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
    
  • Maple
    A187021:= n -> simplify( n^(n/2)*GegenbauerC(n, -n, -(n+1)/(2*sqrt(n))) );
    1, seq(A187021(n), n = 1..30); # G. C. Greubel, May 31 2020
    a := n -> hypergeom([-n, -n], [1], n):
    seq(simplify(a(n)), n=0..18); # Peter Luschny, Dec 22 2020
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n,k]^2*n^k,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)
    Table[If[n==0, 1, Simplify[n^(n/2)*GegenbauerC[n, -n, -(n+1)/(2 Sqrt[n])]]], {n, 0, 30}] (* Emanuele Munarini, Oct 20 2016 *)
  • Maxima
    a(n):=coeff(expand((1+(n+1)*x+n*x^2)^n),x,n);
    makelist(a(n),n,0,20);
    
  • PARI
    {a(n)=sum(k=0,n,binomial(n,k)^2*n^k)} \\ Paul D. Hanna, Mar 29 2011
    
  • Sage
    [1]+[ n^(n/2)*gegenbauer(n, -n, -(n+1)/(2*sqrt(n))) for n in (1..30)] # G. C. Greubel, May 31 2020

Formula

a(n) = [x^n] (1 + (n+1)*x + n*x^2)^n.
a(n) = n^(n/2)*GegenbauerPoly(n,-n,-(n+1)/(2*sqrt(n))). - Emanuele Munarini, Oct 20 2016
a(n) = Sum_{k=0..n} binomial(n,k)^2 * n^k. - Paul D. Hanna, Mar 29 2011
a(n) ~ n^(n-1/4) * exp(2*sqrt(n)-1) / (2*sqrt(Pi)). - Vaclav Kotesovec, Apr 17 2014
a(n) = n! * [x^n] exp((n + 1)*x) * BesselI(0,2*sqrt(n)*x). - Ilya Gutkovskiy, May 31 2020
a(n) = hypergeom([-n, -n], [1], n). - Peter Luschny, Dec 22 2020

A187018 Coefficient of x^n in (1 + x + n*x^2)^n.

Original entry on oeis.org

1, 1, 5, 19, 145, 851, 7741, 58605, 600769, 5420035, 61026901, 628076153, 7648488145, 87388647373, 1138801242125, 14182492489651, 196218339243777, 2628971539313875, 38377805385510181, 547815690902283225, 8395817775835635601, 126725586542235932329
Offset: 0

Views

Author

Emanuele Munarini, Mar 02 2011

Keywords

Examples

			G.f. = 1 + x + 5*x^2 + 19*x^3 + 145*x^4 + 851*x^5 + 7741*x^6 + 58605*x^7 + ...
		

Crossrefs

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+x+n*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
    
  • Maple
    A187018:= n -> simplify( n^(n/2)*GegenbauerC(n, -n, -1/(2*sqrt(n))) );
    1, seq(A187018(n), n = 1..30); # G. C. Greubel, May 31 2020
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^k, {k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)
    a[ n_]:= SeriesCoefficient[ (1 + x + n*x^2)^n, {x, 0, n}]; (* Michael Somos, Dec 12 2014 *)
    Table[If[n == 0, 1, Simplify[n^(n/2) GegenbauerC[n, -n, -1/(2 Sqrt[n])]]], {n, 0, 12}] (* Emanuele Munarini, Oct 20 2016 *)
  • Maxima
    a(n):=coeff(expand((1+x+n*x^2)^n),x,n);
    makelist(a(n),n,0,20);
    
  • PARI
    {a(n)=polcoeff(1/sqrt(1 - 2*x - (4*n-1)*x^2 +x*O(x^n)),n)}
    for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Dec 12 2014
    
  • PARI
    {a(n) = polcoef((1+x+n*x^2)^n, n)} \\ Seiichi Manyama, May 01 2019
    
  • Sage
    [1]+[ n^(n/2)*gegenbauer(n, -n, -1/(2*sqrt(n))) for n in (1..30)] # G. C. Greubel, May 31 2020

Formula

a(n) = [x^n] (1 + x + n*x^2)^n.
a(n) = n^(n/2)*GegenbauerPoly(n,-n,-1/(2*sqrt(n))). - Emanuele Munarini, Oct 20 2016
a(n) = Sum_{k=0..floor(n/2)} binomial(n, k)*binomial(n-k, n-2*k)*n^k.
a(n) ~ 2^(n-1/2) * exp(sqrt(n)/2-1/8) * n^(n/2-1/2) / sqrt(Pi). - Vaclav Kotesovec, Apr 17 2014
a(n) = [x^n] 1/sqrt(1 - 2*x - (4*n-1)*x^2). - Paul D. Hanna, Dec 12 2014
a(n) = n! * [x^n] exp(x) * BesselI(0,2*sqrt(n)*x). - Ilya Gutkovskiy, May 31 2020

A187019 Coefficient of x^n in expansion of (1+n*x+(n+1)*x^2)^n.

Original entry on oeis.org

1, 1, 10, 99, 1366, 23525, 484436, 11582375, 314830342, 9576682569, 322014499852, 11851803991115, 473634489404220, 20414267521982893, 943592267071798696, 46545155813085562575, 2439857423310573714758
Offset: 0

Views

Author

Emanuele Munarini, Mar 02 2011

Keywords

Crossrefs

Programs

  • Magma
    P:=PolynomialRing(Integers()); [ Coefficients((1+n*x+(n+1)*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
    
  • Mathematica
    Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^(n-2*k)*(n+1)^k, {k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 18 2014 *)
    Flatten[{1,Table[n^n * Hypergeometric2F1[1/2-n/2,-n/2,1,4*(1+n)/n^2],{n,1,20}]}] (* Vaclav Kotesovec, Apr 18 2014 *)
  • Maxima
    a(n):=coeff(expand((1+n*x+(n+1)*x^2)^n),x,n);
    makelist(a(n),n,0,12);
    
  • PARI
    a(n) = polcoef((1+n*x+(n+1)*x^2)^n, n); \\ Michel Marcus, Jun 01 2020

Formula

a(n) = [x^n] (1+n*x+(n+1)*x^2)^n.
a(n) = Sum (C(n, k)*C(n-k, n-2*k)*n^(n-2*k)*(n+1)^k, k=0..floor(n/2)).
a(n) ~ exp(2*sqrt(n)-2) * n^(n-1/4) / (2*sqrt(Pi)). - Vaclav Kotesovec, Apr 18 2014
a(n) = n! * [x^n] exp(n*x) * BesselI(0,2*sqrt(n + 1)*x). - Ilya Gutkovskiy, Jun 01 2020

A099169 a(n) = (1/n) * Sum_{k=0..n-1} C(n,k) * C(n,k+1) * (n-1)^k.

Original entry on oeis.org

1, 2, 11, 100, 1257, 20076, 387739, 8766248, 226739489, 6595646860, 212944033051, 7550600079672, 291527929539433, 12169325847587832, 545918747361417291, 26183626498897556176, 1336713063706757646465
Offset: 1

Views

Author

Ralf Stephan, Oct 09 2004

Keywords

Comments

A diagonal of Narayana array (A008550).

Crossrefs

Programs

  • Magma
    A099169:= func< n | (&+[Binomial(n, j)*Binomial(n-1,j)*(n-1)^j/(j+1): j in [0..n-1]]) >;
    [A099169(n): n in [1..30]]; // G. C. Greubel, Feb 16 2021
    
  • Maple
    A099169:= n-> add( binomial(n, j)*binomial(n-1,j)*(n-1)^j/(j+1), j=0..n-1);
    seq( A099169(n), n=1..30) # G. C. Greubel, Feb 16 2021
  • Mathematica
    Join[{1},Table[Sum[Binomial[n,k]Binomial[n,k+1](n-1)^k,{k,0,n-1}]/n,{n,2,20}]] (* Harvey P. Dale, Oct 07 2013 *)
    Table[Hypergeometric2F1[1-n,-n,2,-1+n],{n,1,20}] (* Vaclav Kotesovec, Apr 18 2014 *)
  • PARI
    a(n) = (1/n) * sum(k=0, n-1, binomial(n,k) * binomial(n,k+1) * (n-1)^k); \\ Michel Marcus, Feb 16 2021
  • Sage
    def A099169(n): return sum( binomial(n, j)*binomial(n-1,j)*(n-1)^j/(j+1) for j in [0..n-1])
    [A099169(n) for n in [1..30]] # G. C. Greubel, Feb 16 2021
    

Formula

From Vaclav Kotesovec, Apr 18 2014, extended Dec 01 2021: (Start)
a(n) = Hypergeometric2F1([1-n,-n], [2], -1+n).
a(n) ~ exp(2*sqrt(n)-2) * n^(n-7/4) / (2*sqrt(Pi)) * (1 + 119/(48*sqrt(n))). (End)

A307910 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 7, 0, 1, 4, 15, 32, 19, 0, 1, 5, 24, 81, 136, 51, 0, 1, 6, 35, 160, 459, 592, 141, 0, 1, 7, 48, 275, 1120, 2673, 2624, 393, 0, 1, 8, 63, 432, 2275, 8064, 15849, 11776, 1107, 0, 1, 9, 80, 637, 4104, 19375, 59136, 95175, 53344, 3139, 0
Offset: 0

Views

Author

Seiichi Manyama, May 05 2019

Keywords

Examples

			Square array begins:
   1,   1,     1,     1,      1,       1,       1, ...
   0,   1,     2,     3,      4,       5,       6, ...
   0,   3,     8,    15,     24,      35,      48, ...
   0,   7,    32,    81,    160,     275,     432, ...
   0,  19,   136,   459,   1120,    2275,    4104, ...
   0,  51,   592,  2673,   8064,   19375,   40176, ...
   0, 141,  2624, 15849,  59136,  168125,  400896, ...
   0, 393, 11776, 95175, 439296, 1478125, 4053888, ...
		

Crossrefs

Columns k=0..4 give A000007, A002426, A006139, A122868, A059304.
Main diagonal gives A092366.

Programs

  • Mathematica
    A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, ] = 1; A[, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)

Formula

A(n,k) is the coefficient of x^n in the expansion of (1 + k*x + k*x^2)^n.
A(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,j) * binomial(n-j,j) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n,2*j) * binomial(2*j,j).
n * A(n,k) = k * (2*n-1) * A(n-1,k) - k * (k-4) * (n-1) * A(n-2,k).

A307911 Coefficient of x^n in expansion of (1 - n*x - n*x^2)^n.

Original entry on oeis.org

1, -1, 0, 27, -416, 5625, -74304, 924385, -8626176, -48361131, 7124800000, -340421390199, 13686496542720, -522760216822129, 19658830846298112, -735037915447265625, 27218267709730979840, -980444996625142158435, 32830565919734078521344, -889052809376495994642527
Offset: 0

Views

Author

Seiichi Manyama, May 05 2019

Keywords

Comments

Also coefficient of x^n in the expansion of 1/sqrt(1 + 2*n*x + n*(n+4)*x^2).

Crossrefs

Main diagonal of A307819.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(-n)^(n-k) * Binomial[n, 2*k] * Binomial[2*k, k], {k, 0, Floor[n/2]}]; Array[a, 20, 0] // Flatten (* Amiram Eldar, May 12 2021 *)
    Join[{1}, Table[(-n)^n*Hypergeometric2F1[1/2 - n/2, -n/2, 1, -4/n], {n, 1, 20}]] (* Vaclav Kotesovec, May 12 2021 *)
  • PARI
    {a(n) = polcoef((1-n*x-n*x^2)^n, n)}
    
  • PARI
    {a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, k)*binomial(n-k, k))}
    
  • PARI
    {a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, 2*k)*binomial(2*k, k))}

Formula

a(n) = Sum_{k=0..floor(n/2)} (-n)^(n-k) * binomial(n,k) * binomial(n-k,k) = Sum_{k=0..floor(n/2)} (-n)^(n-k) * binomial(n,2*k) * binomial(2*k,k).
For n>0, a(n) = (-n)^n * Hypergeometric2F1(1/2 - n/2, -n/2, 1, -4/n). - Vaclav Kotesovec, May 12 2021

A307844 Constant term in the expansion of (n/x + 1 + n*x)^n.

Original entry on oeis.org

1, 1, 9, 55, 1729, 19251, 1050841, 16977129, 1322929665, 28017221059, 2839212609001, 74390784295653, 9283240524317761, 289865990675075725, 42976734096778661817, 1557837326400792009751, 267561369300137776050177, 11042876765198762014337235
Offset: 0

Views

Author

Seiichi Manyama, May 01 2019

Keywords

Comments

Also coefficient of x^n in the expansion of (1 + x + (n*x)^2)^n.
Also coefficient of x^n in the expansion of 1/sqrt(1 - 2*x + (1-4*n^2)*x^2).

Crossrefs

Main diagonal of A307847.

Programs

  • Mathematica
    Flatten[{1, Table[Sum[(-1)^k * (2*n + 1)^(n-k) * n^k * Binomial[n,k] * Binomial[2*k,k], {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, May 02 2019 *)
  • PARI
    {a(n) = polcoef((n/x+1+n*x)^n, 0)}
    
  • PARI
    {a(n) = polcoef((1+x+(n*x)^2)^n, n)}
    
  • PARI
    {a(n) = sum(k=0, n, (1-2*n)^(n-k)*n^k*binomial(n, k)*binomial(2*k, k))}
    
  • PARI
    {a(n) = sum(k=0, n, (1+2*n)^(n-k)*(-n)^k*binomial(n, k)*binomial(2*k, k))}
    
  • PARI
    {a(n) = sum(k=0, n\2, n^(2*k)*binomial(n, 2*k)*binomial(2*k, k))}

Formula

a(n) = Sum_{k=0..n} (1-2*n)^(n-k) * n^k * binomial(n,k) * binomial(2*k,k).
a(n) = Sum_{k=0..n} (1+2*n)^(n-k) * (-n)^k * binomial(n,k) * binomial(2*k,k).
a(n) = Sum_{k=0..floor(n/2)} n^(2*k) *binomial(n,2*k) * binomial(2*k,k).
a(n) ~ (exp(1/2) + (-1)^n * exp(-1/2)) * 2^(n - 1/2) * n^(n - 1/2) / sqrt(Pi). - Vaclav Kotesovec, May 02 2019

A307903 Coefficient of x^n in (1 + n*x + n*x^3)^n.

Original entry on oeis.org

1, 1, 4, 36, 448, 6875, 124956, 2624293, 62537728, 1667191653, 49158400000, 1588285928306, 55796298391296, 2117279603738494, 86299754734693696, 3760031421065559375, 174374733095888748544, 8575617145497637681301, 445758339115421869936896, 24417549315693295193935516
Offset: 0

Views

Author

Seiichi Manyama, May 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[n^n * HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2, 1}, -27/(4*n^2)], {n, 1, 20}]}] (* Vaclav Kotesovec, May 05 2019 *)
  • PARI
    {a(n) = polcoef((1+n*x+n*x^3)^n, n)}
    
  • PARI
    {a(n) = sum(k=0, n\3, n^(n-2*k)*binomial(n,3*k)*binomial(3*k,k))}

Formula

a(n) = Sum_{k=0..floor(n/3)} n^(n-2*k) * binomial(n,3*k) * binomial(3*k,k).
a(n) ~ exp(3*n^(1/3)/2^(2/3)) * n^(n - 1/6) / (2^(2/3)*sqrt(3*Pi)) * (1 - 79/(36 * 2^(1/3) * n^(1/3))). - Vaclav Kotesovec, May 05 2019
Showing 1-10 of 11 results. Next