A360592
G.f.: Sum_{k>=0} (1 + k*x)^k * x^k.
Original entry on oeis.org
1, 1, 2, 5, 14, 44, 149, 543, 2096, 8539, 36444, 162380, 752181, 3612037, 17933038, 91843329, 484280386, 2624400428, 14595111277, 83178971707, 485218783724, 2893881790823, 17628815344600, 109585578277012, 694575012732989, 4485139961090153, 29486515600393930
Offset: 0
-
N:= 40:
S:= series(add((1+k*x)^k*x^k, k=0..N),x,N+1):
seq(coeff(S,x,k),k=0..N); # Robert Israel, Feb 13 2023
-
nmax = 30; CoefficientList[Series[Sum[(1 + k*x)^k * x^k, {k, 0, nmax}], {x, 0, nmax}], x]
Flatten[{1, Table[Sum[Binomial[n-k, k] * (n-k)^k, {k, 0, n/2}], {n, 1, 30}]}]
-
{a(n) = polcoeff(sum(m=0, n, (1 + m*x)^m * x^m + x*O(x^n)), n)};
for(n=0, 30, print1(a(n), ", "))
A186925
Coefficient of x^n in (1+n*x+x^2)^n.
Original entry on oeis.org
1, 1, 6, 45, 454, 5775, 88796, 1602447, 33213510, 777665691, 20302315252, 584774029983, 18422140045596, 630132567760345, 23257790717110392, 921362075184792825, 38994274473840538182, 1755943506127367745795, 83829045032101462204100, 4229207755493569286374167
Offset: 0
-
P:=PolynomialRing(Integers()); [ Coefficients((1+n*x+x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 02 2011
-
Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^(n-2*k), {k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)
Table[GegenbauerC[n, -n, -n/2] + KroneckerDelta[n, 0], {n, 0, 100}] (* Emanuele Munarini, Oct 20 2016 *)
Table[SeriesCoefficient[(1 + n*x + x^2)^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 13 2023 *)
-
a(n):=coeff(expand((1+n*x+x^2)^n),x,n);
-
makelist(ultraspherical(n,-n,-n/2),n,0,12); /* Emanuele Munarini, Oct 20 2016 */
makelist(a(n),n,0,20);
-
{a(n) = sum(k=0, n, (n-2)^(n-k)*binomial(n, k)*binomial(2*k, k))} \\ Seiichi Manyama, May 01 2019
-
a(n) = polcoef((1+n*x+x^2)^n, n); \\ Michel Marcus, May 01 2019
A187021
Coefficient of x^n in (1 + (n+1)*x + n*x^2)^n.
Original entry on oeis.org
1, 2, 13, 136, 1921, 33876, 712909, 17383584, 481003009, 14869654300, 507406003501, 18928740714192, 765897591633409, 33392080668673832, 1559976990077534253, 77717020110946293376, 4111810085670587224065, 230190619432401207833004, 13591965974806603671569101
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..381 (terms 0..100 from Vincenzo Librandi)
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - _N. J. A. Sloane_, Oct 08 2012
-
P:=PolynomialRing(Integers()); [ Coefficients((1+(n+1)*x+n*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
-
A187021:= n -> simplify( n^(n/2)*GegenbauerC(n, -n, -(n+1)/(2*sqrt(n))) );
1, seq(A187021(n), n = 1..30); # G. C. Greubel, May 31 2020
a := n -> hypergeom([-n, -n], [1], n):
seq(simplify(a(n)), n=0..18); # Peter Luschny, Dec 22 2020
-
Flatten[{1,Table[Sum[Binomial[n,k]^2*n^k,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)
Table[If[n==0, 1, Simplify[n^(n/2)*GegenbauerC[n, -n, -(n+1)/(2 Sqrt[n])]]], {n, 0, 30}] (* Emanuele Munarini, Oct 20 2016 *)
-
a(n):=coeff(expand((1+(n+1)*x+n*x^2)^n),x,n);
makelist(a(n),n,0,20);
-
{a(n)=sum(k=0,n,binomial(n,k)^2*n^k)} \\ Paul D. Hanna, Mar 29 2011
-
[1]+[ n^(n/2)*gegenbauer(n, -n, -(n+1)/(2*sqrt(n))) for n in (1..30)] # G. C. Greubel, May 31 2020
A187018
Coefficient of x^n in (1 + x + n*x^2)^n.
Original entry on oeis.org
1, 1, 5, 19, 145, 851, 7741, 58605, 600769, 5420035, 61026901, 628076153, 7648488145, 87388647373, 1138801242125, 14182492489651, 196218339243777, 2628971539313875, 38377805385510181, 547815690902283225, 8395817775835635601, 126725586542235932329
Offset: 0
G.f. = 1 + x + 5*x^2 + 19*x^3 + 145*x^4 + 851*x^5 + 7741*x^6 + 58605*x^7 + ...
-
P:=PolynomialRing(Integers()); [ Coefficients((1+x+n*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
-
A187018:= n -> simplify( n^(n/2)*GegenbauerC(n, -n, -1/(2*sqrt(n))) );
1, seq(A187018(n), n = 1..30); # G. C. Greubel, May 31 2020
-
Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^k, {k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 17 2014 *)
a[ n_]:= SeriesCoefficient[ (1 + x + n*x^2)^n, {x, 0, n}]; (* Michael Somos, Dec 12 2014 *)
Table[If[n == 0, 1, Simplify[n^(n/2) GegenbauerC[n, -n, -1/(2 Sqrt[n])]]], {n, 0, 12}] (* Emanuele Munarini, Oct 20 2016 *)
-
a(n):=coeff(expand((1+x+n*x^2)^n),x,n);
makelist(a(n),n,0,20);
-
{a(n)=polcoeff(1/sqrt(1 - 2*x - (4*n-1)*x^2 +x*O(x^n)),n)}
for(n=0,25,print1(a(n),", ")) \\ Paul D. Hanna, Dec 12 2014
-
{a(n) = polcoef((1+x+n*x^2)^n, n)} \\ Seiichi Manyama, May 01 2019
-
[1]+[ n^(n/2)*gegenbauer(n, -n, -1/(2*sqrt(n))) for n in (1..30)] # G. C. Greubel, May 31 2020
A187019
Coefficient of x^n in expansion of (1+n*x+(n+1)*x^2)^n.
Original entry on oeis.org
1, 1, 10, 99, 1366, 23525, 484436, 11582375, 314830342, 9576682569, 322014499852, 11851803991115, 473634489404220, 20414267521982893, 943592267071798696, 46545155813085562575, 2439857423310573714758
Offset: 0
-
P:=PolynomialRing(Integers()); [ Coefficients((1+n*x+(n+1)*x^2)^n)[n+1]: n in [0..22] ]; // Klaus Brockhaus, Mar 03 2011
-
Flatten[{1,Table[Sum[Binomial[n, k]*Binomial[n-k, n-2*k]*n^(n-2*k)*(n+1)^k, {k,0,Floor[n/2]}],{n,1,20}]}] (* Vaclav Kotesovec, Apr 18 2014 *)
Flatten[{1,Table[n^n * Hypergeometric2F1[1/2-n/2,-n/2,1,4*(1+n)/n^2],{n,1,20}]}] (* Vaclav Kotesovec, Apr 18 2014 *)
-
a(n):=coeff(expand((1+n*x+(n+1)*x^2)^n),x,n);
makelist(a(n),n,0,12);
-
a(n) = polcoef((1+n*x+(n+1)*x^2)^n, n); \\ Michel Marcus, Jun 01 2020
A099169
a(n) = (1/n) * Sum_{k=0..n-1} C(n,k) * C(n,k+1) * (n-1)^k.
Original entry on oeis.org
1, 2, 11, 100, 1257, 20076, 387739, 8766248, 226739489, 6595646860, 212944033051, 7550600079672, 291527929539433, 12169325847587832, 545918747361417291, 26183626498897556176, 1336713063706757646465
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..100
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8. - From _N. J. A. Sloane_, Oct 08 2012
-
A099169:= func< n | (&+[Binomial(n, j)*Binomial(n-1,j)*(n-1)^j/(j+1): j in [0..n-1]]) >;
[A099169(n): n in [1..30]]; // G. C. Greubel, Feb 16 2021
-
A099169:= n-> add( binomial(n, j)*binomial(n-1,j)*(n-1)^j/(j+1), j=0..n-1);
seq( A099169(n), n=1..30) # G. C. Greubel, Feb 16 2021
-
Join[{1},Table[Sum[Binomial[n,k]Binomial[n,k+1](n-1)^k,{k,0,n-1}]/n,{n,2,20}]] (* Harvey P. Dale, Oct 07 2013 *)
Table[Hypergeometric2F1[1-n,-n,2,-1+n],{n,1,20}] (* Vaclav Kotesovec, Apr 18 2014 *)
-
a(n) = (1/n) * sum(k=0, n-1, binomial(n,k) * binomial(n,k+1) * (n-1)^k); \\ Michel Marcus, Feb 16 2021
-
def A099169(n): return sum( binomial(n, j)*binomial(n-1,j)*(n-1)^j/(j+1) for j in [0..n-1])
[A099169(n) for n in [1..30]] # G. C. Greubel, Feb 16 2021
A307910
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 2*k*x + k*(k-4)*x^2).
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 7, 0, 1, 4, 15, 32, 19, 0, 1, 5, 24, 81, 136, 51, 0, 1, 6, 35, 160, 459, 592, 141, 0, 1, 7, 48, 275, 1120, 2673, 2624, 393, 0, 1, 8, 63, 432, 2275, 8064, 15849, 11776, 1107, 0, 1, 9, 80, 637, 4104, 19375, 59136, 95175, 53344, 3139, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, ...
0, 3, 8, 15, 24, 35, 48, ...
0, 7, 32, 81, 160, 275, 432, ...
0, 19, 136, 459, 1120, 2275, 4104, ...
0, 51, 592, 2673, 8064, 19375, 40176, ...
0, 141, 2624, 15849, 59136, 168125, 400896, ...
0, 393, 11776, 95175, 439296, 1478125, 4053888, ...
-
A[n_, k_] := k^n Hypergeometric2F1[(1-n)/2, -n/2, 1, 4/k]; A[0, ] = 1; A[, 0] = 0; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, May 07 2019 *)
A307911
Coefficient of x^n in expansion of (1 - n*x - n*x^2)^n.
Original entry on oeis.org
1, -1, 0, 27, -416, 5625, -74304, 924385, -8626176, -48361131, 7124800000, -340421390199, 13686496542720, -522760216822129, 19658830846298112, -735037915447265625, 27218267709730979840, -980444996625142158435, 32830565919734078521344, -889052809376495994642527
Offset: 0
-
a[0] = 1; a[n_] := Sum[(-n)^(n-k) * Binomial[n, 2*k] * Binomial[2*k, k], {k, 0, Floor[n/2]}]; Array[a, 20, 0] // Flatten (* Amiram Eldar, May 12 2021 *)
Join[{1}, Table[(-n)^n*Hypergeometric2F1[1/2 - n/2, -n/2, 1, -4/n], {n, 1, 20}]] (* Vaclav Kotesovec, May 12 2021 *)
-
{a(n) = polcoef((1-n*x-n*x^2)^n, n)}
-
{a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, k)*binomial(n-k, k))}
-
{a(n) = sum(k=0, n\2, (-n)^(n-k)*binomial(n, 2*k)*binomial(2*k, k))}
A307844
Constant term in the expansion of (n/x + 1 + n*x)^n.
Original entry on oeis.org
1, 1, 9, 55, 1729, 19251, 1050841, 16977129, 1322929665, 28017221059, 2839212609001, 74390784295653, 9283240524317761, 289865990675075725, 42976734096778661817, 1557837326400792009751, 267561369300137776050177, 11042876765198762014337235
Offset: 0
-
Flatten[{1, Table[Sum[(-1)^k * (2*n + 1)^(n-k) * n^k * Binomial[n,k] * Binomial[2*k,k], {k, 0, n}], {n, 1, 20}]}] (* Vaclav Kotesovec, May 02 2019 *)
-
{a(n) = polcoef((n/x+1+n*x)^n, 0)}
-
{a(n) = polcoef((1+x+(n*x)^2)^n, n)}
-
{a(n) = sum(k=0, n, (1-2*n)^(n-k)*n^k*binomial(n, k)*binomial(2*k, k))}
-
{a(n) = sum(k=0, n, (1+2*n)^(n-k)*(-n)^k*binomial(n, k)*binomial(2*k, k))}
-
{a(n) = sum(k=0, n\2, n^(2*k)*binomial(n, 2*k)*binomial(2*k, k))}
A307903
Coefficient of x^n in (1 + n*x + n*x^3)^n.
Original entry on oeis.org
1, 1, 4, 36, 448, 6875, 124956, 2624293, 62537728, 1667191653, 49158400000, 1588285928306, 55796298391296, 2117279603738494, 86299754734693696, 3760031421065559375, 174374733095888748544, 8575617145497637681301, 445758339115421869936896, 24417549315693295193935516
Offset: 0
-
Flatten[{1, Table[n^n * HypergeometricPFQ[{1/3 - n/3, 2/3 - n/3, -n/3}, {1/2, 1}, -27/(4*n^2)], {n, 1, 20}]}] (* Vaclav Kotesovec, May 05 2019 *)
-
{a(n) = polcoef((1+n*x+n*x^3)^n, n)}
-
{a(n) = sum(k=0, n\3, n^(n-2*k)*binomial(n,3*k)*binomial(3*k,k))}
Showing 1-10 of 11 results.
Comments