cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A360611 Expansion of Sum_{k>=0} (k * x * (1 + x))^k.

Original entry on oeis.org

1, 1, 5, 35, 341, 4230, 63844, 1135753, 23273363, 539881365, 13986073419, 400227436252, 12538263892232, 426810214125441, 15687071552060221, 619144491880324087, 26117514728711229877, 1172635546310430028562, 55833864788507320490268
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Binomial[n-k, k] * (n-k)^(n-k), {k, 0, n/2}], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 14 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0,N, (k*x*(1+x))^k))
    
  • PARI
    a(n) = sum(k=0,n\2, (n-k)^(n-k)*binomial(n-k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-k)^(n-k) * binomial(n-k,k).
a(n) ~ exp(exp(-1)) * n^n. - Vaclav Kotesovec, Feb 14 2023

A360618 Expansion of Sum_{k>=0} (k * x * (1 + k*x))^k.

Original entry on oeis.org

1, 1, 5, 43, 515, 7950, 150086, 3349945, 86296849, 2519907605, 82249222661, 2967449372028, 117266100841668, 5037282382077353, 233701540415817409, 11645959855678136519, 620389246928233860127, 35181554115178393462386, 2116059351692554708911298
Offset: 0

Views

Author

Seiichi Manyama, Feb 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[Sum[Binomial[n-k, k] * (n-k)^n, {k, 0, n/2}], {n, 1, 20}]}] (* Vaclav Kotesovec, Feb 14 2023 *)
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (k*x*(1+k*x))^k))
    
  • PARI
    a(n) = sum(k=0, n\2, (n-k)^n*binomial(n-k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-k)^n * binomial(n-k,k).
a(n) ~ c * d^n * n^n, where d = (1-r)^(2-r) / (r^r * (1-2*r)^(1-2*r)) where r = 0.163662210494891118101893756356803907477984542... is the root of the equation (1-2*r)^2 = r*(1-r) * exp(1/(1-r)) and c = 0.78619174295244329885973980954744130517052330684023764340463604028671858569... - Vaclav Kotesovec, Feb 14 2023

A360699 G.f.: Sum_{k>=0} (1 + k*x)^k * x^(2*k).

Original entry on oeis.org

1, 0, 1, 1, 1, 4, 5, 9, 28, 43, 97, 281, 507, 1286, 3666, 7494, 20470, 58725, 132484, 381700, 1113180, 2719887, 8171219, 24337511, 63524916, 197606643, 602261524, 1662206380, 5328738685, 16628469912, 48148703533, 158544768073, 506473892417, 1529218062752, 5159071807165
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[(1 + k*x)^k * x^(2*k), {k, 0, nmax}], {x, 0, nmax}], x]
    Join[{1}, Table[Sum[Binomial[k, n - 2*k] * k^(n - 2*k), {k, 0, n}], {n, 1, 40}]]

Formula

a(n) = Sum_{k=0..n} binomial(k,n-2*k) * k^(n-2*k).
log(a(n)) ~ n/3 * log(n/3).
a(n) ~ exp(exp(1/3)*n^(1/3)/3^(1/3)) * n^(n/3) / 3^(n/3 + 1) * (1 + (3^(1/3)/(8*exp(1/3)) - 4*exp(2/3)/3^(5/3)) / n^(1/3) + (67/(128*3^(1/3)*exp(2/3)) + 8*exp(4/3)/3^(10/3)) / n^(2/3)).

A360707 G.f.: Sum_{k>=0} (1 + k*x)^k * x^(3*k).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 4, 4, 1, 9, 27, 28, 16, 96, 257, 281, 250, 1251, 3161, 3665, 4321, 19489, 47685, 58662, 84099, 354739, 852216, 1110344, 1837924, 7401269, 17604002, 24221890, 44761045, 174287005, 412627144, 597640105, 1204831674, 4574415066, 10818841343
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[(1 + k*x)^k * x^(3*k), {k, 0, nmax}], {x, 0, nmax}], x]
    Join[{1}, Table[Sum[Binomial[k, n - 3*k] * k^(n - 3*k), {k, 0, n}], {n, 1, 50}]]

Formula

a(n) = Sum_{k=0..n} binomial(k,n-3*k) * k^(n-3*k).
log(a(n)) ~ n/4 * log(n/4).
a(n) ~ exp(exp(1/4)*n^(1/4)/4^(1/4)) * n^(n/4) / 4^(n/4 + 1) * (1 + 1/(2^(5/2)*exp(1/4)*n^(1/4)) + (67/(192*exp(1/2)) - 15*exp(1/2)/16)/sqrt(n)).

A360782 Expansion of Sum_{k>=0} x^k / (1 - k*x^2)^(k+1).

Original entry on oeis.org

1, 1, 1, 3, 7, 16, 45, 125, 363, 1127, 3561, 11696, 39727, 138113, 494213, 1811075, 6784115, 25985928, 101520833, 404305549, 1640002039, 6767576175, 28395916893, 121048681024, 523902418555, 2300906314849, 10248029334297, 46266088140291
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n-k,k] * (n-2*k)^k, {k,0,n/2}], {n,1,30}]] (* Vaclav Kotesovec, Feb 21 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k*x^2)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^k*binomial(n-k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^k * binomial(n-k,k).

A360479 Expansion of Sum_{k>=0} (x * (1 + (k * x)^2))^k.

Original entry on oeis.org

1, 1, 1, 2, 9, 28, 81, 369, 1753, 7323, 36337, 207401, 1114345, 6308368, 40326033, 256982157, 1658573497, 11650405774, 83966740913, 608348063576, 4659734909385, 36973835868521, 295709600709585, 2454457098977559, 21106884235025305
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n - 2*k,k] * (n - 2*k)^(2*k), {k,0,n/3}], {n,1,30}]] (* Vaclav Kotesovec, Feb 19 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x*(1+(k*x)^2))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (n-2*k)^(2*k)*binomial(n-2*k, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n-2*k)^(2*k) * binomial(n-2*k,k).
a(n) ~ exp(exp(4/3)*n^(1/3)/3^(1/3)) * n^(2*n/3) / 3^(2*n/3 + 1) * (1 + (3^(1/3)/(8*exp(4/3)) - 13*exp(8/3)/(6*3^(2/3))) / n^(1/3) + (67/(128*3^(1/3)*exp(8/3)) - 5*3^(2/3)*exp(4/3)/16 + 169*exp(16/3)/(216*3^(1/3))) / n^(2/3) + (3929/2304 + 497/(1024*exp(4)) + 7913*exp(4)/1728 - 2197*exp(8)/11664)/n). - Vaclav Kotesovec, Feb 19 2023

A360747 Expansion of Sum_{k>=0} (x * (1 + (k * x)^3))^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 17, 82, 257, 690, 3484, 26978, 160347, 726085, 3529206, 26885924, 220706533, 1474182023, 8834370165, 65392181686, 604821608674, 5230627589958, 39543579302104, 312733691925723, 3013530105191283, 30474809255061289
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[Binomial[n - 3*k,k] * (n - 3*k)^(3*k), {k,0,n/4}], {n,1,30}]] (* Vaclav Kotesovec, Feb 19 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x*(1+(k*x)^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\4, (n-3*k)^(3*k)*binomial(n-3*k, k));

Formula

a(n) = Sum_{k=0..floor(n/4)} (n-3*k)^(3*k) * binomial(n-3*k,k).
a(n) ~ exp(exp(9/4)*n^(1/4)/sqrt(2)) * n^(3*n/4) / 2^(3*n/2 + 2) * (1 + 1/(4*sqrt(2)*exp(9/4) * n^(1/4)) + (67/(192*exp(9/2)) - 37*exp(9/2)/16) / sqrt(n) + (497/(768*sqrt(2)*exp(27/4)) - 205*exp(9/4)/(64*sqrt(2))) / n^(3/4) + (10721/3072 + 218831/(368640*exp(9)) + (1369*exp(9))/512)/n), see graph for more minor asymptotic terms. - Vaclav Kotesovec, Feb 20 2023

A360787 Expansion of Sum_{k>=0} x^k / (1 - (k*x)^2)^(k+1).

Original entry on oeis.org

1, 1, 1, 3, 13, 40, 177, 965, 4733, 28103, 184065, 1191888, 8713549, 67005689, 528870257, 4526024267, 40051790333, 368513578472, 3583302492545, 35868588067501, 373781214260749, 4052932682659599, 45218033687522481, 523234757502985824, 6245693941097387773
Offset: 0

Views

Author

Seiichi Manyama, Feb 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n-k,k] * (n-2*k)^(2*k), {k,0,n/2}], {n,1,30}]] (* Vaclav Kotesovec, Feb 21 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(k*x)^2)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n\2, (n-2*k)^(2*k)*binomial(n-k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} (n-2*k)^(2*k) * binomial(n-k,k).

A360748 Expansion of Sum_{k>=0} (x * (1 + k*x^2))^k.

Original entry on oeis.org

1, 1, 1, 2, 5, 10, 21, 53, 133, 327, 861, 2361, 6469, 18168, 52757, 155221, 463077, 1412656, 4379917, 13747504, 43834213, 141866555, 464650309, 1541008295, 5176660997, 17586913779, 60400627453, 209746820056, 735953607173, 2607716976945, 9330605338485
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[Binomial[n - 2*k,k] * (n - 2*k)^k, {k,0,n/3}], {n,1,30}]] (* Vaclav Kotesovec, Feb 20 2023 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, (x*(1+k*x^2))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (n-2*k)^k*binomial(n-2*k, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n-2*k)^k * binomial(n-2*k,k).
a(n) ~ exp(exp(2/3)*n^(2/3)/3^(2/3) - 5*exp(4/3)*n^(1/3)/(18*3^(1/3)) + 22*exp(2)/81) * n^(n/3) / 3^(n/3 + 1) * (1 + (2*exp(2/3)/3^(5/3) - 3295*exp(8/3)/(2916*3^(2/3)))/n^(1/3) + (3^(2/3)/(8*exp(2/3)) + 35*exp(4/3)/(36*3^(1/3)) + 27379*exp(10/3)/(17496*3^(1/3)) + 10857025*exp(16/3)/(51018336*3^(1/3)))/n^(2/3)). - Vaclav Kotesovec, Feb 20 2023

A360232 G.f. Sum_{n>=0} a(n)*x^n = Sum_{n>=0} (1 + n*x + x^2)^n * x^n.

Original entry on oeis.org

1, 1, 2, 6, 16, 51, 172, 626, 2409, 9791, 41671, 185224, 855865, 4100761, 20314349, 103827684, 546388333, 2955518901, 16407286272, 93350267922, 543674327227, 3237568471183, 19693508812475, 122249256779882, 773797772369256, 4990290667614087, 32766888950422831
Offset: 0

Views

Author

Paul D. Hanna, Feb 12 2023

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 16*x^4 + 51*x^5 + 172*x^6 + 626*x^7 + 2409*x^8 + 9791*x^9 + 41671*x^10 + 185224*x^11 + 855865*x^12 + ...
where
A(x) = 1 + (1 + x + x^2)*x + (1 + 2*x + x^2)^2*x^2 + (1 + 3*x + x^2)^3*x^3 + (1 + 4*x + x^2)^4*x^4 + ... + (1 + n*x + x^2)^n*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Sum[(1 + k*x + x^2)^k * x^k, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 13 2023 *)
    Flatten[{1, Table[Sum[Sum[Binomial[k,j] * Binomial[j,n-k-j] * k^(2*j - n + k), {j, 0, k}], {k, 1, n}], {n, 1, 30}]}] (* Vaclav Kotesovec, Feb 14 2023 *)
  • PARI
    {a(n) = polcoeff( sum(m=0,n, (1 + m*x + x^2)^m * x^m +x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=1..n}(Sum_{j=0..k} binomial(k,j) * binomial(j,n-k-j) * k^(2*j-n+k)). - Vaclav Kotesovec, Feb 14 2023
Showing 1-10 of 15 results. Next