cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A360592 G.f.: Sum_{k>=0} (1 + k*x)^k * x^k.

Original entry on oeis.org

1, 1, 2, 5, 14, 44, 149, 543, 2096, 8539, 36444, 162380, 752181, 3612037, 17933038, 91843329, 484280386, 2624400428, 14595111277, 83178971707, 485218783724, 2893881790823, 17628815344600, 109585578277012, 694575012732989, 4485139961090153, 29486515600393930
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 13 2023

Keywords

Crossrefs

Programs

  • Maple
    N:= 40:
    S:= series(add((1+k*x)^k*x^k, k=0..N),x,N+1):
    seq(coeff(S,x,k),k=0..N); # Robert Israel, Feb 13 2023
  • Mathematica
    nmax = 30; CoefficientList[Series[Sum[(1 + k*x)^k * x^k, {k, 0, nmax}], {x, 0, nmax}], x]
    Flatten[{1, Table[Sum[Binomial[n-k, k] * (n-k)^k, {k, 0, n/2}], {n, 1, 30}]}]
  • PARI
    {a(n) = polcoeff(sum(m=0, n, (1 + m*x)^m * x^m + x*O(x^n)), n)};
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k) * (n-k)^k.
a(n) ~ exp(exp(1/2)*sqrt(n/2) - 3*exp(1)/8) * n^(n/2) / 2^(n/2 + 1) * (1 + ((exp(1/2) + exp(-1/2))/2^(5/2) + 11*exp(3/2)/2^(9/2))/sqrt(n)).

A360699 G.f.: Sum_{k>=0} (1 + k*x)^k * x^(2*k).

Original entry on oeis.org

1, 0, 1, 1, 1, 4, 5, 9, 28, 43, 97, 281, 507, 1286, 3666, 7494, 20470, 58725, 132484, 381700, 1113180, 2719887, 8171219, 24337511, 63524916, 197606643, 602261524, 1662206380, 5328738685, 16628469912, 48148703533, 158544768073, 506473892417, 1529218062752, 5159071807165
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Sum[(1 + k*x)^k * x^(2*k), {k, 0, nmax}], {x, 0, nmax}], x]
    Join[{1}, Table[Sum[Binomial[k, n - 2*k] * k^(n - 2*k), {k, 0, n}], {n, 1, 40}]]

Formula

a(n) = Sum_{k=0..n} binomial(k,n-2*k) * k^(n-2*k).
log(a(n)) ~ n/3 * log(n/3).
a(n) ~ exp(exp(1/3)*n^(1/3)/3^(1/3)) * n^(n/3) / 3^(n/3 + 1) * (1 + (3^(1/3)/(8*exp(1/3)) - 4*exp(2/3)/3^(5/3)) / n^(1/3) + (67/(128*3^(1/3)*exp(2/3)) + 8*exp(4/3)/3^(10/3)) / n^(2/3)).

A360709 Expansion of Sum_{k>=0} (x^3 / (1 - k*x))^k.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 5, 13, 34, 90, 247, 720, 2256, 7568, 26814, 98982, 377541, 1484254, 6021789, 25271173, 109850447, 494355359, 2298362532, 11008133629, 54175202125, 273460921605, 1414449612648, 7494262602464, 40669492399396
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x^3/(1-k*x))^k))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n\3, k^(n-3*k)*binomial(n-2*k-1, k-1)));

Formula

a(n) = Sum_{k=1..floor(n/3)} k^(n-3*k) * binomial(n-2*k-1,k-1) for n > 0.

A360747 Expansion of Sum_{k>=0} (x * (1 + (k * x)^3))^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 17, 82, 257, 690, 3484, 26978, 160347, 726085, 3529206, 26885924, 220706533, 1474182023, 8834370165, 65392181686, 604821608674, 5230627589958, 39543579302104, 312733691925723, 3013530105191283, 30474809255061289
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[Binomial[n - 3*k,k] * (n - 3*k)^(3*k), {k,0,n/4}], {n,1,30}]] (* Vaclav Kotesovec, Feb 19 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x*(1+(k*x)^3))^k))
    
  • PARI
    a(n) = sum(k=0, n\4, (n-3*k)^(3*k)*binomial(n-3*k, k));

Formula

a(n) = Sum_{k=0..floor(n/4)} (n-3*k)^(3*k) * binomial(n-3*k,k).
a(n) ~ exp(exp(9/4)*n^(1/4)/sqrt(2)) * n^(3*n/4) / 2^(3*n/2 + 2) * (1 + 1/(4*sqrt(2)*exp(9/4) * n^(1/4)) + (67/(192*exp(9/2)) - 37*exp(9/2)/16) / sqrt(n) + (497/(768*sqrt(2)*exp(27/4)) - 205*exp(9/4)/(64*sqrt(2))) / n^(3/4) + (10721/3072 + 218831/(368640*exp(9)) + (1369*exp(9))/512)/n), see graph for more minor asymptotic terms. - Vaclav Kotesovec, Feb 20 2023
Showing 1-4 of 4 results.