cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360708 Expansion of Sum_{k>=0} (x^2 / (1 - k*x))^k.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 14, 42, 136, 479, 1825, 7433, 32053, 145608, 695081, 3479117, 18209842, 99373513, 563920590, 3320674902, 20255823092, 127799984935, 832807892861, 5597481205009, 38753768384761, 276057156622776, 2021100095469577, 15193591060371577
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[Binomial[n-k-1,k-1] * k^(n-2*k), {k,0,n/2}], {n,1,40}]] (* Vaclav Kotesovec, Feb 20 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x^2/(1-k*x))^k))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n\2, k^(n-2*k)*binomial(n-k-1, k-1)));

Formula

a(n) = Sum_{k=1..floor(n/2)} k^(n-2*k) * binomial(n-k-1,k-1) for n > 0.

A360815 Expansion of Sum_{k>=0} x^(3*k) / (1 - k*x)^(k+1).

Original entry on oeis.org

1, 0, 0, 1, 2, 3, 5, 11, 30, 88, 260, 771, 2343, 7474, 25380, 91650, 347988, 1371873, 5570173, 23233703, 99676434, 440931977, 2014619700, 9506385864, 46246356169, 231348803925, 1187212953132, 6239006165820, 33546182775824, 184497923546700
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Cf. A360709.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^(3*k)/(1-k*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n\3, k^(n-3*k)*binomial(n-2*k, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} k^(n-3*k) * binomial(n-2*k,k).

A360819 Expansion of Sum_{k>=0} ( (k*x)^3 / (1 - k*x) )^k.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 65, 257, 769, 21732, 182268, 1075171, 22120299, 292415838, 2784944366, 52394511682, 914813711338, 12411977351379, 240868108545883, 5024364548461861, 88977315031536205, 1888119425325238979, 44744897995532996819, 971263427084750362992
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, ((k*x)^3/(1-k*x))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, k^n*binomial(n-2*k-1, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} k^n * binomial(n-2*k-1,n-3*k).
Showing 1-3 of 3 results.