cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360709 Expansion of Sum_{k>=0} (x^3 / (1 - k*x))^k.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 5, 13, 34, 90, 247, 720, 2256, 7568, 26814, 98982, 377541, 1484254, 6021789, 25271173, 109850447, 494355359, 2298362532, 11008133629, 54175202125, 273460921605, 1414449612648, 7494262602464, 40669492399396
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x^3/(1-k*x))^k))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n\3, k^(n-3*k)*binomial(n-2*k-1, k-1)));

Formula

a(n) = Sum_{k=1..floor(n/3)} k^(n-3*k) * binomial(n-2*k-1,k-1) for n > 0.

A360814 Expansion of Sum_{k>=0} x^(2*k) / (1 - k*x)^(k+1).

Original entry on oeis.org

1, 0, 1, 2, 4, 10, 30, 98, 338, 1240, 4877, 20496, 91213, 426678, 2090081, 10702438, 57193760, 318283388, 1840036058, 11026424446, 68370955450, 438039068726, 2896018310881, 19733372875632, 138418266287689, 998363508783924, 7396739279819185, 56239695790595786
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Cf. A360708.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^(2*k)/(1-k*x)^(k+1)))
    
  • PARI
    a(n) = sum(k=0, n\2, k^(n-2*k)*binomial(n-k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} k^(n-2*k) * binomial(n-k,k).

A360818 Expansion of Sum_{k>=0} ( (k*x)^2 / (1 - k*x) )^k.

Original entry on oeis.org

1, 0, 1, 1, 17, 65, 922, 7074, 106183, 1248479, 21144289, 331763177, 6441011484, 124904347404, 2773880604749, 63538143151589, 1600211849569585, 42076439530000297, 1189408501356380558, 35214128238218917974, 1106088535644470694779
Offset: 0

Views

Author

Seiichi Manyama, Feb 21 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, ((k*x)^2/(1-k*x))^k))
    
  • PARI
    a(n) = sum(k=0, n\2, k^n*binomial(n-k-1, n-2*k));

Formula

a(n) = Sum_{k=0..floor(n/2)} k^n * binomial(n-k-1,n-2*k).
Showing 1-3 of 3 results.