cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A360592 G.f.: Sum_{k>=0} (1 + k*x)^k * x^k.

Original entry on oeis.org

1, 1, 2, 5, 14, 44, 149, 543, 2096, 8539, 36444, 162380, 752181, 3612037, 17933038, 91843329, 484280386, 2624400428, 14595111277, 83178971707, 485218783724, 2893881790823, 17628815344600, 109585578277012, 694575012732989, 4485139961090153, 29486515600393930
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 13 2023

Keywords

Crossrefs

Programs

  • Maple
    N:= 40:
    S:= series(add((1+k*x)^k*x^k, k=0..N),x,N+1):
    seq(coeff(S,x,k),k=0..N); # Robert Israel, Feb 13 2023
  • Mathematica
    nmax = 30; CoefficientList[Series[Sum[(1 + k*x)^k * x^k, {k, 0, nmax}], {x, 0, nmax}], x]
    Flatten[{1, Table[Sum[Binomial[n-k, k] * (n-k)^k, {k, 0, n/2}], {n, 1, 30}]}]
  • PARI
    {a(n) = polcoeff(sum(m=0, n, (1 + m*x)^m * x^m + x*O(x^n)), n)};
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k) * (n-k)^k.
a(n) ~ exp(exp(1/2)*sqrt(n/2) - 3*exp(1)/8) * n^(n/2) / 2^(n/2 + 1) * (1 + ((exp(1/2) + exp(-1/2))/2^(5/2) + 11*exp(3/2)/2^(9/2))/sqrt(n)).

A360707 G.f.: Sum_{k>=0} (1 + k*x)^k * x^(3*k).

Original entry on oeis.org

1, 0, 0, 1, 1, 0, 1, 4, 4, 1, 9, 27, 28, 16, 96, 257, 281, 250, 1251, 3161, 3665, 4321, 19489, 47685, 58662, 84099, 354739, 852216, 1110344, 1837924, 7401269, 17604002, 24221890, 44761045, 174287005, 412627144, 597640105, 1204831674, 4574415066, 10818841343
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[(1 + k*x)^k * x^(3*k), {k, 0, nmax}], {x, 0, nmax}], x]
    Join[{1}, Table[Sum[Binomial[k, n - 3*k] * k^(n - 3*k), {k, 0, n}], {n, 1, 50}]]

Formula

a(n) = Sum_{k=0..n} binomial(k,n-3*k) * k^(n-3*k).
log(a(n)) ~ n/4 * log(n/4).
a(n) ~ exp(exp(1/4)*n^(1/4)/4^(1/4)) * n^(n/4) / 4^(n/4 + 1) * (1 + 1/(2^(5/2)*exp(1/4)*n^(1/4)) + (67/(192*exp(1/2)) - 15*exp(1/2)/16)/sqrt(n)).

A360479 Expansion of Sum_{k>=0} (x * (1 + (k * x)^2))^k.

Original entry on oeis.org

1, 1, 1, 2, 9, 28, 81, 369, 1753, 7323, 36337, 207401, 1114345, 6308368, 40326033, 256982157, 1658573497, 11650405774, 83966740913, 608348063576, 4659734909385, 36973835868521, 295709600709585, 2454457098977559, 21106884235025305
Offset: 0

Views

Author

Seiichi Manyama, Feb 19 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n - 2*k,k] * (n - 2*k)^(2*k), {k,0,n/3}], {n,1,30}]] (* Vaclav Kotesovec, Feb 19 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x*(1+(k*x)^2))^k))
    
  • PARI
    a(n) = sum(k=0, n\3, (n-2*k)^(2*k)*binomial(n-2*k, k));

Formula

a(n) = Sum_{k=0..floor(n/3)} (n-2*k)^(2*k) * binomial(n-2*k,k).
a(n) ~ exp(exp(4/3)*n^(1/3)/3^(1/3)) * n^(2*n/3) / 3^(2*n/3 + 1) * (1 + (3^(1/3)/(8*exp(4/3)) - 13*exp(8/3)/(6*3^(2/3))) / n^(1/3) + (67/(128*3^(1/3)*exp(8/3)) - 5*3^(2/3)*exp(4/3)/16 + 169*exp(16/3)/(216*3^(1/3))) / n^(2/3) + (3929/2304 + 497/(1024*exp(4)) + 7913*exp(4)/1728 - 2197*exp(8)/11664)/n). - Vaclav Kotesovec, Feb 19 2023

A360708 Expansion of Sum_{k>=0} (x^2 / (1 - k*x))^k.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 14, 42, 136, 479, 1825, 7433, 32053, 145608, 695081, 3479117, 18209842, 99373513, 563920590, 3320674902, 20255823092, 127799984935, 832807892861, 5597481205009, 38753768384761, 276057156622776, 2021100095469577, 15193591060371577
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[Sum[Binomial[n-k-1,k-1] * k^(n-2*k), {k,0,n/2}], {n,1,40}]] (* Vaclav Kotesovec, Feb 20 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x^2/(1-k*x))^k))
    
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n\2, k^(n-2*k)*binomial(n-k-1, k-1)));

Formula

a(n) = Sum_{k=1..floor(n/2)} k^(n-2*k) * binomial(n-k-1,k-1) for n > 0.
Showing 1-4 of 4 results.