A096767 Duplicate of A052119.
6, 9, 7, 7, 7, 4, 6, 5, 7, 9, 6, 4, 0, 0, 7, 9, 8, 2, 0, 0, 6, 7, 9, 0, 5, 9, 2, 5, 5, 1, 7, 5, 2, 5, 9
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
1.433127426722311758317183455775...
With[{nn = 110}, RealDigits[FromContinuedFraction[Range[nn]], 10, nn][[1]]] (* Or *) RealDigits[ BesselI[0, 2] / BesselI[1, 2], 10, 110] [[1]] (* Or *) RealDigits[ Sum[1/(n!n!), {n, 0, Infinity}] / Sum[n/(n!n!), {n, 0, Infinity}], 10, 110] [[1]]
set_display('none)$fpprec:100$bfloat(cfdisrep(makelist(x,x,1,1000))); /* Dimitri Papadopoulos, Oct 25 2022 */
besseli(0,2)/besseli(1,2) \\ Charles R Greathouse IV, Feb 19 2014
The irregular triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 ... O: 1 1: 1 2: 2 1 3: 6 4 4: 24 18 1 5: 120 96 9 6: 720 600 72 1 7: 5040 4320 600 16 8: 40320 35280 5400 200 1 9: 362880 322560 52920 2400 25 10: 3628800 3265920 564480 29400 450 1 11: 39916800 36288000 6531840 376320 7350 36 12: 479001600 439084800 81648000 5080320 117600 882 1 ...Reformatted and extended by _Wolfdieter Lang_, Mar 02 2013 E.g., to get row 7, multiply each term of row 6 by 7, then add the term NW of term in row 6: 5040 = (7)(720); 4320 = (7)(600) + 20; 600 = (7)(72) + 96; 16 = (7)(1) + 9. Thus row 7 = 5040 4320 600 16 with a sum of 9976 = a(7) of A001040. From _Wolfdieter Lang_, Mar 02 2013: (Start) Recurrence (short version): a(7,2) = 7*72 + 96 = 600. Recurrence (long version): a(7,2) = (2*5-1)*72 + 96 - (5-1)^2*9 = 600. a(7,2) = binomial(5,2)*5!/2! = 10*3*4*5 = 600. (End)
L := (n, k) -> abs(coeff(n!*simplify(LaguerreL(n,x)), x, k)): seq(seq(L(n-k, k), k=0..n/2), n=0..12); # Peter Luschny, Jan 22 2020
Table[CoefficientList[Denominator[Together[Fold[w/(#2+#1) &, Infinity, Reverse @ Table[k,{k,1,n}]]]],w],{n,16}]; (* Wouter Meeussen, Aug 08 2010 *) (* or equivalently: *) Table[( (n-m)!*Binomial[n-m, m] )/m! ,{n,0,15}, {m,0,Floor[n/2]}] (* Wouter Meeussen, Aug 08 2010 *) row[n_] := If[n == 0, 1, x/ContinuedFractionK[x, i, {i, 0, n}] // Simplify // Together // Denominator // CoefficientList[#, x] &]; row /@ Range[0, 12] // Flatten (* Jean-François Alcover, Oct 28 2019 *)
0.80431856111715795076768044139...
RealDigits[FromContinuedFraction[Range[0,100]^2],10,120][[1]] (* Harvey P. Dale, May 07 2018 *)
dec_exp(v)= w=contfracpnqn(v); w[1,1]/w[2,1]+0. dec_exp(vector(2000,i,(i-1)^2))
0.44638996589653450704768179519...
RealDigits[FromContinuedFraction[2Range[0,200]],10,120][[1]] (* Harvey P. Dale, Oct 30 2011 *)
dec_exp(v)= {my(w=contfracpnqn(v)); w[1,1]/w[2,1]+0.0; } dec_exp(vector(2000,i,2*(i-1)))
0.2424996125808019453507023535036354074122660448659455966...
RealDigits[BesselI[1, 1/2]/BesselI[0, 1/2], 10, 110] [[1]] RealDigits[Hypergeometric0F1[2, (1/2)^2/4]/(4 Gamma[2] Hypergeometric0F1[1, (1/2)^2/4]), 10, 110][[1]]
besseli(1,1/2)/besseli(0,1/2) \\ Michel Marcus, Jul 03 2018
2.575920321368221956857496782315044490612981953260015...
RealDigits[BesselJ[1, 2]/BesselJ[0, 2], 10, 100] [[1]] RealDigits[Sum[(-1)^k/((k + 1) (k!)^2), {k, 0, Infinity}]/Sum[(-1)^k/(k!)^2, {k, 0, Infinity}], 10, 100][[1]]
besselj(1,2)/besselj(0,2) \\ Charles R Greathouse IV, Oct 23 2023
0.3160892412682211840956016917105181147668629270070418207...
RealDigits[BesselI[1, 2/3]/BesselI[0, 2/3], 10, 110] [[1]] RealDigits[Hypergeometric0F1[2, (2/3)^2/4] /(3 Gamma[2] Hypergeometric0F1[1, (2/3)^2/4]), 10, 110][[1]]
besseli(1,2/3)/besseli(0,2/3) \\ Michel Marcus, Jul 03 2018
0.1961038122179955134083610646268785173725058094464270021...
RealDigits[BesselI[1, 2/5]/BesselI[0, 2/5], 10, 110] [[1]] RealDigits[Hypergeometric0F1[2, (2/5)^2/4]/(5 Gamma[2] Hypergeometric0F1[1, (2/5)^2/4]), 10, 110][[1]]
besseli(1,2/5)/besseli(0,2/5) \\ Michel Marcus, Jul 03 2018
Triangle starts: 0; 0, 1; 0, 2; 0, 6, 1; 0, 24, 6; 0, 120, 36, 1; 0, 720, 240, 12; The numerator of w/(1+w/(2+w/(3+w/(4+w/5)))) equals 120*w + 36*w^2 + w^3.
Table[CoefficientList[Numerator[Together[Fold[w/(#2+#1) &,Infinity,Reverse @ Table[k,{k,1,n}]]]],w],{n,16}]; (* or equivalently *) Table[(n-m+1)!/m! *Binomial[n-m,m-1], {n,0,16}, {m,0,Floor[n/2+1/2]}]
Comments