cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A096767 Duplicate of A052119.

Original entry on oeis.org

6, 9, 7, 7, 7, 4, 6, 5, 7, 9, 6, 4, 0, 0, 7, 9, 8, 2, 0, 0, 6, 7, 9, 0, 5, 9, 2, 5, 5, 1, 7, 5, 2, 5, 9
Offset: 0

Views

Author

Keywords

A060997 Decimal representation of continued fraction 1, 2, 3, 4, 5, 6, 7, ...

Original entry on oeis.org

1, 4, 3, 3, 1, 2, 7, 4, 2, 6, 7, 2, 2, 3, 1, 1, 7, 5, 8, 3, 1, 7, 1, 8, 3, 4, 5, 5, 7, 7, 5, 9, 9, 1, 8, 2, 0, 4, 3, 1, 5, 1, 2, 7, 6, 7, 9, 0, 5, 9, 8, 0, 5, 2, 3, 4, 3, 4, 4, 2, 8, 6, 3, 6, 3, 9, 4, 3, 0, 9, 1, 8, 3, 2, 5, 4, 1, 7, 2, 9, 0, 0, 1, 3, 6, 5, 0, 3, 7, 2, 6, 4, 3, 5, 7, 8, 6, 1, 1, 4, 6, 5, 9, 5, 0
Offset: 1

Views

Author

Robert G. Wilson v, May 14 2001

Keywords

Comments

The value of this continued fraction is the ratio of two Bessel functions: BesselI(0,2)/BesselI(1,2) = A070910/A096789. Or, equivalently, to the ratio of the sums: Sum_{n>=0} 1/(n!n!) and Sum_{n>=0} n/(n!n!). - Mark Hudson (mrmarkhudson(AT)hotmail.com), Jan 31 2003
1.43312...=[1,2,3,4,5,...] = shape of a rectangle which partitions into n squares at stage n; i.e., this is an example of the match between the continued fraction of a number r and a rectangle having shape r. See A188640. - Clark Kimberling, Apr 09 2011

Examples

			1.433127426722311758317183455775...
		

Crossrefs

Programs

  • Mathematica
    With[{nn = 110}, RealDigits[FromContinuedFraction[Range[nn]], 10, nn][[1]]]
    (* Or *) RealDigits[ BesselI[0, 2] / BesselI[1, 2], 10, 110] [[1]]
    (* Or *) RealDigits[ Sum[1/(n!n!), {n, 0, Infinity}] / Sum[n/(n!n!), {n, 0, Infinity}], 10, 110] [[1]]
  • Maxima
    set_display('none)$fpprec:100$bfloat(cfdisrep(makelist(x,x,1,1000))); /* Dimitri Papadopoulos, Oct 25 2022 */
  • PARI
    besseli(0,2)/besseli(1,2) \\ Charles R Greathouse IV, Feb 19 2014
    

Formula

A084950 Array of coefficients of denominator polynomials of the n-th approximation of the continued fraction x/(1+x/(2+x/(3+..., related to Laguerre polynomial coefficients.

Original entry on oeis.org

1, 1, 2, 1, 6, 4, 24, 18, 1, 120, 96, 9, 720, 600, 72, 1, 5040, 4320, 600, 16, 40320, 35280, 5400, 200, 1, 362880, 322560, 52920, 2400, 25, 3628800, 3265920, 564480, 29400, 450, 1, 39916800, 36288000, 6531840, 376320, 7350, 36, 479001600, 439084800, 81648000, 5080320, 117600, 882, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 14 2003

Keywords

Comments

A factorial triangle, with row sums A001040(n+1), n >= 0.
Conjecture: also coefficient triangle of the denominators of the (n-th convergents to) the continued fraction w/(1+w/(2+w/(3+w/... This continued fraction converges to 0.697774657964... = BesselI(1,2)/BesselI(0,2) for w=1. For instance, the denominator of w/(1 + w/(2 + w/(3 + w/(4 + w/5)))) equals 120 + 96*w + 9*w^2. - Wouter Meeussen, Aug 08 2010
For general w, Bill Gosper showed it equals n!*2F3([1/2-n/2,-n/2], [1,-n,-n], 4*w). - Wouter Meeussen, Jan 05 2013
From Wolfdieter Lang, Mar 02 2013: (Start)
The row length sequence of this array is 1 + floor(n/2) = A008619(n), n >= 0.
The continued fraction 0 + K_{k>=1}(x/k) = x/(1+x/(2+x/(3+... has n-th approximation P(n,x)/Q(n,x). These polynomials satisfy the recurrence q(n,x) = n*q(n-1,x) + x*q(n-2,x), for q replaced by P or Q with inputs P(-1,x) = 1, P(0,x) = 0 and Q(-1,x) = 0 and Q(0,1) = 1. The present array provides the Q-coefficients: Q(n,x) = sum(a(n,m)*x^m, m=0 .. floor(n/2)), n >= 0. For the P(n,x)/x coefficients see the companion array A221913. This proves the first part of W. Meeussen's conjecture given above.
The solution with input q(-1,x) = a and q(0,x) = b is then, due to linearity, q(a,b;n,x) = a*P(n,x) + b*Q(n,x). The motivation to look at the q(n,x) recurrence came from an e-mails from Gary Detlefs, who considered integer x and various inputs and gave explicit formulas.
This array coincides with the SW-NE diagonals of the unsigned Laguerre polynomial coefficient triangle |A021009|.
The entries a(n,m) have a combinatorial interpretation in terms of certain so-called labeled Morse code polynomials using dots (length 1) and dashes (of length 2). a(n,m) is the number of possibilities to decorate the n positions 1,2,...,n with m dashes, m from {0, 1, ..., floor(n/2)}, and n-2*m dots. A dot at position k has a weight k and each dash between two neighboring positions has a label x. a(n,m) is the sum of these labeled Morse codes with m dashes after the label x^m has been divided out. E.g., a(5,2) = 5 + 3 + 1 = 9 from the 3 codes: dash dash dot, dash dot dash, and dot dash dash, or (12)(34)5, (12)3(45) and 1(23)(45) with labels (which are in general multiplicative) 5*x^2, 3*x^2 and 1*x^2 , respectively. For the array of these labeled Morse code coefficients see A221915. See the Graham et al. reference, p. 302, on Euler's continuants and Morse code.
Row sums Q(n,1) = A001040(n+1), n >= 0. Alternating row sums Q(n,-1) = A058797(n). (End)
For fixed x the limit of the continued fraction K_{k>=1}(x/k) (see above) can be computed from the large order n behavior of Phat(n,x) and Q(n,x) given in the formula section in terms of Bessel functions. This follows with the well-known large n behavior of BesselI and BesselK, as given, e.g., in the Sidi and Hoggan reference, eqs. (1.1) and (1.2). See also the book by Olver, ch. 10, 7, p. 374. This continued fraction converges for fixed x to sqrt(x)*BesselI(1,2*sqrt(x))/BesselI(0,2*sqrt(x)). - Wolfdieter Lang, Mar 07 2013

Examples

			The irregular triangle a(n,m) begins:
  n\m          0          1        2        3      4    5  6 ...
  O:           1
  1:           1
  2:           2          1
  3:           6          4
  4:          24         18        1
  5:         120         96        9
  6:         720        600       72        1
  7:        5040       4320      600       16
  8:       40320      35280     5400      200      1
  9:      362880     322560    52920     2400     25
  10:    3628800    3265920   564480    29400    450    1
  11:   39916800   36288000  6531840   376320   7350   36
  12:  479001600  439084800 81648000  5080320 117600  882  1
...Reformatted and extended by _Wolfdieter Lang_, Mar 02 2013
E.g., to get row 7, multiply each term of row 6 by 7, then add the term NW of term in row 6: 5040 = (7)(720); 4320 = (7)(600) + 20; 600 = (7)(72) + 96; 16 = (7)(1) + 9. Thus row 7 = 5040 4320 600 16 with a sum of 9976 = a(7) of A001040.
From _Wolfdieter Lang_, Mar 02 2013: (Start)
Recurrence (short version): a(7,2) = 7*72 + 96 = 600.
Recurrence (long version): a(7,2) = (2*5-1)*72 + 96 - (5-1)^2*9 = 600.
a(7,2) = binomial(5,2)*5!/2! = 10*3*4*5 = 600. (End)
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 2nd ed.; Addison-Wesley, 1994.
  • F. W. J. Olver, Asymptotics and Special Functions, Academic Press, 1974 (1991 5th printing).

Crossrefs

Cf. A021009 (Laguerre triangle). For the A-numbers of the column sequences see the Cf. section of A021009. A221913.
Cf. A052119.

Programs

  • Maple
    L := (n, k) -> abs(coeff(n!*simplify(LaguerreL(n,x)), x, k)):
    seq(seq(L(n-k, k), k=0..n/2), n=0..12); # Peter Luschny, Jan 22 2020
  • Mathematica
    Table[CoefficientList[Denominator[Together[Fold[w/(#2+#1) &, Infinity, Reverse @ Table[k,{k,1,n}]]]],w],{n,16}]; (* Wouter Meeussen, Aug 08 2010 *)
    (* or equivalently: *)
    Table[( (n-m)!*Binomial[n-m, m] )/m! ,{n,0,15}, {m,0,Floor[n/2]}] (* Wouter Meeussen, Aug 08 2010 *)
    row[n_] := If[n == 0, 1, x/ContinuedFractionK[x, i, {i, 0, n}] // Simplify // Together // Denominator // CoefficientList[#, x] &];
    row /@ Range[0, 12] // Flatten (* Jean-François Alcover, Oct 28 2019 *)

Formula

a(n, m) = ((n-m)!/m!)*binomial(n-m,m). - Wouter Meeussen, Aug 08 2010
From Wolfdieter Lang, Mar 02 2013: (Start)
Recurrence (short version): a(n,m) = n*a(n-1,m) + a(n-2,m-1), n>=1, a(0,0) =1, a(n,-1) = 0, a(n,m) = 0 if n < 2*m. From the recurrence for the Q(n,x) polynomials given in a comment above.
Recurrence (long version): a(n,m) = (2*(n-m)-1)*a(n-1,m) + a(n-2,m-1) - (n-m-1)^2*a(n-2,m), n >= 1, a(0,0) =1, a(n,-1) = 0, a(n,m) =0 if n < 2*m. From the standard three term recurrence for the unsigned orthogonal Laguerre polynomials. This recurrence can be simplified to the preceding one, because of the explicit factorial formula given above which follows from the one for the Laguerre coefficients (which, in turn, derives from the Rodrigues formula and the Leibniz rule). This proves the relation a(n,m) = |Lhat(n-m,m)|, with the coefficients |Lhat(n,m)| = |A021009(n,m)| of the unsigned n!*L(n,x) Laguerre polynomials.
For the e.g.f.s of the column sequences see A021009 (here with different offset, which could be obtained by integration).
E.g.f. for row polynomials gQ(z,x) := Sum_{z>=0} Q(n,x)*z^n = (i*Pi*sqrt(x)/sqrt(1-z))*(BesselJ(1, 2*i*sqrt(x)*sqrt(1-z))*BesselY(0, 2*i*sqrt(x)) - BesselY(1, 2*i*sqrt(x)*sqrt(1-z))*BesselJ(0,2*i*sqrt(x))), with the imaginary unit i = sqrt(-1) and Bessel functions. (End)
The row polynomials are Q(n,x) = Pi*(z/2)^(n+1)*(BesselY(0,z)*BesselJ(n+1,z) - BesselJ(0,z)*BesselY(n+1,z)) with z := -i*2*sqrt(x), and the imaginary unit i. An alternative form is Q(n,x) = 2*(w/2)^(n+1)*(BesselI(0,w)*BesselK(n+1,w) - BesselK(0,w)*BesselI(n+1,w)*(-1)^(n+1)) with w := -2*sqrt(x). See A221913 for the derivation based on Abramowitz-Stegun's Handbook. - Wolfdieter Lang, Mar 06 2013
Lim_{n -> infinity} Q(n,x)/n! = BesselI(0,2*sqrt(x)). See a comment on asymptotics above. - Wolfdieter Lang, Mar 07 2013

Extensions

Rows 12 to 17 added based on formula by Wouter Meeussen, Aug 08 2010
Name changed by Wolfdieter Lang, Mar 02 2013

A073824 Decimal expansion of number with continued fraction expansion 0, 1, 4, 9, ... (the squares).

Original entry on oeis.org

8, 0, 4, 3, 1, 8, 5, 6, 1, 1, 1, 7, 1, 5, 7, 9, 5, 0, 7, 6, 7, 6, 8, 0, 4, 4, 1, 3, 9, 3, 4, 1, 9, 2, 9, 9, 0, 5, 7, 3, 2, 7, 2, 7, 3, 9, 6, 4, 1, 9, 6, 8, 5, 2, 8, 5, 5, 9, 9, 2, 7, 3, 5, 9, 5, 1, 9, 1, 4, 5, 4, 5, 5, 3, 1, 0, 2, 2, 7, 8, 0, 8, 2, 1, 3, 4, 5, 3, 2, 4, 9, 3, 1, 1, 2, 0, 2, 0, 4, 4, 9, 3, 3, 9
Offset: 0

Views

Author

Rick L. Shepherd, Aug 12 2002

Keywords

Examples

			0.80431856111715795076768044139...
		

Crossrefs

Cf. A000290 (squares), A052119, A309930, A214070.
The numerators and denominators of convergents to this constant are given by A036245 and A036246 respectively.

Programs

  • Mathematica
    RealDigits[FromContinuedFraction[Range[0,100]^2],10,120][[1]] (* Harvey P. Dale, May 07 2018 *)
  • PARI
    dec_exp(v)= w=contfracpnqn(v); w[1,1]/w[2,1]+0.
    dec_exp(vector(2000,i,(i-1)^2))

A073821 Decimal expansion of number with continued fraction expansion 0, 2, 4, 6, ... (the even numbers).

Original entry on oeis.org

4, 4, 6, 3, 8, 9, 9, 6, 5, 8, 9, 6, 5, 3, 4, 5, 0, 7, 0, 4, 7, 6, 8, 1, 7, 9, 5, 1, 9, 2, 6, 4, 2, 6, 6, 9, 7, 7, 6, 2, 5, 3, 1, 4, 7, 4, 0, 0, 3, 8, 7, 8, 2, 2, 8, 6, 1, 1, 9, 8, 9, 8, 6, 5, 4, 9, 5, 1, 4, 8, 9, 3, 1, 4, 4, 3, 6, 7, 5, 6, 2, 5, 6, 8, 6, 0, 7, 6, 8, 8, 0, 0, 6, 9, 9, 5, 1, 3, 6, 5, 8, 2, 2, 7
Offset: 0

Views

Author

Rick L. Shepherd, Aug 12 2002

Keywords

Examples

			0.44638996589653450704768179519...
		

Crossrefs

Cf. A005843 (even numbers), A052119 (continued fraction exp. is 0, 1, 2, 3, ...), A073747 (coth(1), continued fraction exp. is odd numbers).

Programs

  • Mathematica
    RealDigits[FromContinuedFraction[2Range[0,200]],10,120][[1]] (* Harvey P. Dale, Oct 30 2011 *)
  • PARI
    dec_exp(v)= {my(w=contfracpnqn(v)); w[1,1]/w[2,1]+0.0; }
    dec_exp(vector(2000,i,2*(i-1)))

Formula

BesselI(1, 1)/BesselI(0, 1) (courtesy of the Inverse Symbolic Calculator).

A298242 Decimal expansion of BesselI(1,1/2)/BesselI(0,1/2).

Original entry on oeis.org

2, 4, 2, 4, 9, 9, 6, 1, 2, 5, 8, 0, 8, 0, 1, 9, 4, 5, 3, 5, 0, 7, 0, 2, 3, 5, 3, 5, 0, 3, 6, 3, 5, 4, 0, 7, 4, 1, 2, 2, 6, 6, 0, 4, 4, 8, 6, 5, 9, 4, 5, 5, 9, 6, 6, 7, 2, 5, 5, 8, 9, 4, 4, 7, 5, 6, 3, 9, 4, 6, 3, 3, 9, 8, 1, 3, 8, 3, 1, 0, 5, 8, 2, 6, 0, 3, 1, 7, 1, 1, 5, 1, 4, 4, 6, 7, 5, 1, 1, 0, 1, 2, 7, 6, 7, 9, 8, 5, 0, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			0.2424996125808019453507023535036354074122660448659455966...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 1/2]/BesselI[0, 1/2], 10, 110] [[1]]
    RealDigits[Hypergeometric0F1[2, (1/2)^2/4]/(4 Gamma[2] Hypergeometric0F1[1, (1/2)^2/4]), 10, 110][[1]]
  • PARI
    besseli(1,1/2)/besseli(0,1/2) \\ Michel Marcus, Jul 03 2018

Formula

Equals 1/(4 + 1/(8 + 1/(12 + 1/(16 + 1/(20 + 1/(24 + ...)))))).

A296168 Decimal expansion of BesselJ(1,2)/BesselJ(0,2).

Original entry on oeis.org

2, 5, 7, 5, 9, 2, 0, 3, 2, 1, 3, 6, 8, 2, 2, 1, 9, 5, 6, 8, 5, 7, 4, 9, 6, 7, 8, 2, 3, 1, 5, 0, 4, 4, 4, 9, 0, 6, 1, 2, 9, 8, 1, 9, 5, 3, 2, 6, 0, 0, 1, 5, 1, 4, 6, 2, 7, 8, 2, 7, 2, 4, 1, 9, 9, 3, 2, 0, 0, 2, 4, 9, 9, 1, 3, 9, 2, 2, 7, 4, 2, 3, 2, 1, 3, 5, 1, 5, 6, 4, 0, 1, 0, 9, 3, 0, 1, 4, 5, 3
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 06 2017

Keywords

Examples

			2.575920321368221956857496782315044490612981953260015...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselJ[1, 2]/BesselJ[0, 2], 10, 100] [[1]]
    RealDigits[Sum[(-1)^k/((k + 1) (k!)^2), {k, 0, Infinity}]/Sum[(-1)^k/(k!)^2, {k, 0, Infinity}], 10, 100][[1]]
  • PARI
    besselj(1,2)/besselj(0,2) \\ Charles R Greathouse IV, Oct 23 2023

Formula

Equals 2 + 1/(1 + 1/(1 + 1/(2 + 1/(1 + 1/(3 + 1/(1 + 1/(4 + 1/(1 + 1/(5 + 1/(1 + 1/(6 + ...))))))))))).

A298241 Decimal expansion of BesselI(1,2/3)/BesselI(0,2/3).

Original entry on oeis.org

3, 1, 6, 0, 8, 9, 2, 4, 1, 2, 6, 8, 2, 2, 1, 1, 8, 4, 0, 9, 5, 6, 0, 1, 6, 9, 1, 7, 1, 0, 5, 1, 8, 1, 1, 4, 7, 6, 6, 8, 6, 2, 9, 2, 7, 0, 0, 7, 0, 4, 1, 8, 2, 0, 7, 3, 9, 5, 4, 0, 0, 7, 3, 4, 7, 3, 2, 4, 1, 1, 6, 1, 8, 0, 4, 2, 7, 3, 5, 5, 9, 1, 8, 9, 8, 6, 6, 0, 7, 2, 1, 6, 4, 3, 9, 0, 0, 6, 6, 3, 3, 8, 1, 2, 7, 3, 8, 2, 3, 6
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			0.3160892412682211840956016917105181147668629270070418207...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 2/3]/BesselI[0, 2/3], 10, 110] [[1]]
    RealDigits[Hypergeometric0F1[2, (2/3)^2/4] /(3 Gamma[2] Hypergeometric0F1[1, (2/3)^2/4]), 10, 110][[1]]
  • PARI
    besseli(1,2/3)/besseli(0,2/3) \\ Michel Marcus, Jul 03 2018

Formula

Equals 1/(3 + 1/(6 + 1/(9 + 1/(12 + 1/(15 + 1/(18 + ...)))))).

A298243 Decimal expansion of BesselI(1,2/5)/BesselI(0,2/5).

Original entry on oeis.org

1, 9, 6, 1, 0, 3, 8, 1, 2, 2, 1, 7, 9, 9, 5, 5, 1, 3, 4, 0, 8, 3, 6, 1, 0, 6, 4, 6, 2, 6, 8, 7, 8, 5, 1, 7, 3, 7, 2, 5, 0, 5, 8, 0, 9, 4, 4, 6, 4, 2, 7, 0, 0, 2, 1, 1, 7, 6, 1, 7, 1, 4, 6, 5, 6, 6, 4, 7, 2, 0, 7, 2, 4, 6, 8, 6, 9, 5, 0, 7, 4, 4, 7, 5, 7, 5, 2, 4, 7, 4, 2, 7, 1, 4, 1, 2, 4, 4, 5, 3, 3, 2, 1, 3, 0, 7, 2, 0, 4, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			0.1961038122179955134083610646268785173725058094464270021...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 2/5]/BesselI[0, 2/5], 10, 110] [[1]]
    RealDigits[Hypergeometric0F1[2, (2/5)^2/4]/(5 Gamma[2] Hypergeometric0F1[1, (2/5)^2/4]), 10, 110][[1]]
  • PARI
    besseli(1,2/5)/besseli(0,2/5) \\ Michel Marcus, Jul 03 2018

Formula

Equals 1/(5 + 1/(10 + 1/(15 + 1/(20 + 1/(25 + 1/(30 + ...)))))).

A180047 Coefficient triangle of the numerators of the (n-th convergents to) the continued fraction w/(1 + w/(2 + w/(3 + w/(...)))).

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 6, 1, 0, 24, 6, 0, 120, 36, 1, 0, 720, 240, 12, 0, 5040, 1800, 120, 1, 0, 40320, 15120, 1200, 20, 0, 362880, 141120, 12600, 300, 1, 0, 3628800, 1451520, 141120, 4200, 30, 0, 39916800, 16329600, 1693440, 58800, 630, 1, 0, 479001600
Offset: 0

Views

Author

Wouter Meeussen, Aug 08 2010

Keywords

Comments

Equivalence to the binomial formula needs formal proof. This c.f. converges to A052119 = 0.697774657964.. = BesselI(1,2)/BesselI(0,2) for w = 1.

Examples

			Triangle starts:
  0;
  0,   1;
  0,   2;
  0,   6,   1;
  0,  24,   6;
  0, 120,  36,  1;
  0, 720, 240, 12;
The numerator of w/(1+w/(2+w/(3+w/(4+w/5)))) equals 120*w + 36*w^2 + w^3.
		

Crossrefs

Programs

  • Mathematica
    Table[CoefficientList[Numerator[Together[Fold[w/(#2+#1) &,Infinity,Reverse @ Table[k,{k,1,n}]]]],w],{n,16}]; (* or equivalently *) Table[(n-m+1)!/m! *Binomial[n-m,m-1], {n,0,16}, {m,0,Floor[n/2+1/2]}]

Formula

T(n,m) = (n-m+1)!/m!*binomial(n-m, m-1) for n >= 0, 0 <= m <= (n+1)/2.
Showing 1-10 of 24 results. Next