cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A298242 Decimal expansion of BesselI(1,1/2)/BesselI(0,1/2).

Original entry on oeis.org

2, 4, 2, 4, 9, 9, 6, 1, 2, 5, 8, 0, 8, 0, 1, 9, 4, 5, 3, 5, 0, 7, 0, 2, 3, 5, 3, 5, 0, 3, 6, 3, 5, 4, 0, 7, 4, 1, 2, 2, 6, 6, 0, 4, 4, 8, 6, 5, 9, 4, 5, 5, 9, 6, 6, 7, 2, 5, 5, 8, 9, 4, 4, 7, 5, 6, 3, 9, 4, 6, 3, 3, 9, 8, 1, 3, 8, 3, 1, 0, 5, 8, 2, 6, 0, 3, 1, 7, 1, 1, 5, 1, 4, 4, 6, 7, 5, 1, 1, 0, 1, 2, 7, 6, 7, 9, 8, 5, 0, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			0.2424996125808019453507023535036354074122660448659455966...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 1/2]/BesselI[0, 1/2], 10, 110] [[1]]
    RealDigits[Hypergeometric0F1[2, (1/2)^2/4]/(4 Gamma[2] Hypergeometric0F1[1, (1/2)^2/4]), 10, 110][[1]]
  • PARI
    besseli(1,1/2)/besseli(0,1/2) \\ Michel Marcus, Jul 03 2018

Formula

Equals 1/(4 + 1/(8 + 1/(12 + 1/(16 + 1/(20 + 1/(24 + ...)))))).

A308739 Decimal expansion of BesselI(1/3,2/3)/BesselI(-2/3,2/3).

Original entry on oeis.org

8, 0, 5, 4, 8, 0, 0, 2, 2, 3, 8, 6, 9, 1, 8, 0, 4, 5, 8, 7, 3, 5, 5, 6, 6, 2, 7, 4, 7, 5, 7, 8, 6, 4, 1, 0, 4, 3, 9, 1, 3, 1, 4, 4, 6, 4, 2, 0, 4, 4, 2, 6, 8, 8, 6, 0, 2, 9, 6, 6, 8, 3, 4, 0, 6, 5, 1, 9, 2, 0, 3, 8, 2, 3, 0, 9, 3, 3, 5, 9, 3, 7, 4, 9, 2, 4, 5, 7, 6, 3, 2, 2, 3, 8, 5, 3, 6, 2, 5, 0, 5, 5, 4, 7, 7, 6, 5, 7, 9, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 21 2019

Keywords

Comments

From Peter Bala, Nov 28 2019: (Start)
Denoting this constant by c, we have the related simple continued fraction expansions:
3*c = [2; 2, 2, 2, 30, 4, 2, 1, 4, 1, 2, 6, 66, 8, 2, 1, 8, 1, 2, 10, ..., 3*(12*k + 10), 4*k + 4, 2, 1, 4*k + 4, 1, 2, 4*k + 6, ...];
(1/3)*c = [0; 3, 1, 2, 1, 1, 1, 2, 3, 39, 5, 2, 1, 5, 1, 2, 7, 75, 9, 2, 1, 9, 1, 2, 11, ..., 3*(12*k + 1), 4*k + 1, 2, 1, 4*k + 1, 1, 2, 4*k + 3, ...]. (End)

Examples

			0.8054800223869180458735566274757864104391314464...
		

Crossrefs

Cf. A016777 (continued fraction), A073744, A298241, A308740, A308741, A308742, A308743, A308744.

Programs

  • Mathematica
    RealDigits[BesselI[1/3, 2/3]/BesselI[-2/3, 2/3], 10, 110] [[1]]
  • PARI
    besseli(1/3,2/3)/besseli(-2/3,2/3) \\ Felix Fröhlich, Dec 01 2019

Formula

Equals 1/(1 + 1/(4 + 1/(7 + 1/(10 + 1/(13 + 1/(16 + 1/(19 + 1/(22 + 1/(25 + 1/(28 + ...)))))))))).

A308740 Decimal expansion of BesselI(2/3,2/3)/BesselI(-1/3,2/3).

Original entry on oeis.org

4, 5, 5, 5, 4, 4, 5, 2, 6, 0, 8, 1, 8, 7, 3, 5, 5, 6, 6, 2, 5, 1, 8, 2, 0, 3, 6, 2, 3, 3, 3, 4, 7, 9, 6, 2, 8, 2, 7, 4, 8, 8, 5, 0, 5, 0, 7, 6, 9, 3, 1, 7, 9, 9, 4, 5, 7, 5, 1, 6, 1, 2, 2, 9, 3, 0, 4, 5, 5, 0, 9, 2, 7, 7, 5, 6, 7, 3, 2, 1, 4, 5, 2, 0, 2, 1, 0, 6, 7, 5, 3, 5, 8, 2, 5, 2, 0, 2, 5, 7, 7, 9, 7, 6, 3, 9, 4, 7, 5, 7
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 21 2019

Keywords

Examples

			0.45554452608187355662518203623334796282748850507693...
		

Crossrefs

Cf. A016789 (continued fraction), A073744, A298241, A308739, A308741, A308742, A308743, A308744.

Programs

  • Mathematica
    RealDigits[BesselI[2/3, 2/3]/BesselI[-1/3, 2/3], 10, 110] [[1]]
  • PARI
    besseli(2/3,2/3)/besseli(-1/3,2/3) \\ Felix Fröhlich, Dec 01 2019

Formula

Equals 1/(2 + 1/(5 + 1/(8 + 1/(11 + 1/(14 + 1/(17 + 1/(20 + 1/(23 + 1/(26 + 1/(29 + ...)))))))))).
From Peter Bala, Nov 29 2019: (Start)
Denoting this constant by c, we have the related simple continued fraction expansions:
3*c = [1; 2, 1, 2, 1, 2, 33, 4, 1, 2, 5, 2, 1, 6, 69, 8, 1, 2, 9, 2, 1, 10, ..., 3*(12*k + 11), 4*k + 4, 1, 2, 4*k + 5, 2, 1, 4*k + 6, ...];
(1/3)*c = [0; 6, 1, 1, 2, 2, 2, 1, 3, 42, 5, 1, 2, 6, 2, 1, 7, ..., 3*(12*k + 2), 4*k + 1, 1, 2, 4*k + 2, 2, 1, 4*k + 3, ...]. (End)

A298243 Decimal expansion of BesselI(1,2/5)/BesselI(0,2/5).

Original entry on oeis.org

1, 9, 6, 1, 0, 3, 8, 1, 2, 2, 1, 7, 9, 9, 5, 5, 1, 3, 4, 0, 8, 3, 6, 1, 0, 6, 4, 6, 2, 6, 8, 7, 8, 5, 1, 7, 3, 7, 2, 5, 0, 5, 8, 0, 9, 4, 4, 6, 4, 2, 7, 0, 0, 2, 1, 1, 7, 6, 1, 7, 1, 4, 6, 5, 6, 6, 4, 7, 2, 0, 7, 2, 4, 6, 8, 6, 9, 5, 0, 7, 4, 4, 7, 5, 7, 5, 2, 4, 7, 4, 2, 7, 1, 4, 1, 2, 4, 4, 5, 3, 3, 2, 1, 3, 0, 7, 2, 0, 4, 4
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			0.1961038122179955134083610646268785173725058094464270021...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[BesselI[1, 2/5]/BesselI[0, 2/5], 10, 110] [[1]]
    RealDigits[Hypergeometric0F1[2, (2/5)^2/4]/(5 Gamma[2] Hypergeometric0F1[1, (2/5)^2/4]), 10, 110][[1]]
  • PARI
    besseli(1,2/5)/besseli(0,2/5) \\ Michel Marcus, Jul 03 2018

Formula

Equals 1/(5 + 1/(10 + 1/(15 + 1/(20 + 1/(25 + 1/(30 + ...)))))).
Showing 1-4 of 4 results.